Can someone clarify the logic behind the given equation?
$begingroup$
I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$
where does the equation in the first and second parenthesis come from?
Ok, I have another relating question:
why $frac{a_{n+1}}{a_n}> (1+frac{1}{n})$ ? ( The expression of third line).
[![
- enter image description here
]1]1
sequences-and-series limits eulers-constant
$endgroup$
add a comment |
$begingroup$
I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$
where does the equation in the first and second parenthesis come from?
Ok, I have another relating question:
why $frac{a_{n+1}}{a_n}> (1+frac{1}{n})$ ? ( The expression of third line).
[![
- enter image description here
]1]1
sequences-and-series limits eulers-constant
$endgroup$
add a comment |
$begingroup$
I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$
where does the equation in the first and second parenthesis come from?
Ok, I have another relating question:
why $frac{a_{n+1}}{a_n}> (1+frac{1}{n})$ ? ( The expression of third line).
[![
- enter image description here
]1]1
sequences-and-series limits eulers-constant
$endgroup$
I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$
where does the equation in the first and second parenthesis come from?
Ok, I have another relating question:
why $frac{a_{n+1}}{a_n}> (1+frac{1}{n})$ ? ( The expression of third line).
[![
- enter image description here
]1]1
sequences-and-series limits eulers-constant
sequences-and-series limits eulers-constant
edited 27 mins ago
Ieva Brakmane
asked 59 mins ago
Ieva BrakmaneIeva Brakmane
265
265
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
From Bernoulli's inequality, we have
$$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$
Hence,
$$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$
$endgroup$
add a comment |
$begingroup$
It is putting together the result from the first red box with the second one:
- $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$
- $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$
$$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$
$endgroup$
add a comment |
$begingroup$
So, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
The author then applies Bernoulli's inequality to the first term on the RHS:
$$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
We can now return to the first equation and utilize this estimate; namely, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
Finally, we multiply out the RHS of the inequality
$$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
So, we have
$$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
which means that ${a_n}$ is an increasing sequence.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165778%2fcan-someone-clarify-the-logic-behind-the-given-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From Bernoulli's inequality, we have
$$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$
Hence,
$$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$
$endgroup$
add a comment |
$begingroup$
From Bernoulli's inequality, we have
$$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$
Hence,
$$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$
$endgroup$
add a comment |
$begingroup$
From Bernoulli's inequality, we have
$$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$
Hence,
$$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$
$endgroup$
From Bernoulli's inequality, we have
$$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$
Hence,
$$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$
answered 52 mins ago
Siong Thye GohSiong Thye Goh
103k1468119
103k1468119
add a comment |
add a comment |
$begingroup$
It is putting together the result from the first red box with the second one:
- $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$
- $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$
$$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$
$endgroup$
add a comment |
$begingroup$
It is putting together the result from the first red box with the second one:
- $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$
- $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$
$$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$
$endgroup$
add a comment |
$begingroup$
It is putting together the result from the first red box with the second one:
- $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$
- $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$
$$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$
$endgroup$
It is putting together the result from the first red box with the second one:
- $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$
- $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$
$$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$
answered 47 mins ago
trancelocationtrancelocation
13.2k1827
13.2k1827
add a comment |
add a comment |
$begingroup$
So, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
The author then applies Bernoulli's inequality to the first term on the RHS:
$$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
We can now return to the first equation and utilize this estimate; namely, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
Finally, we multiply out the RHS of the inequality
$$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
So, we have
$$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
which means that ${a_n}$ is an increasing sequence.
$endgroup$
add a comment |
$begingroup$
So, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
The author then applies Bernoulli's inequality to the first term on the RHS:
$$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
We can now return to the first equation and utilize this estimate; namely, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
Finally, we multiply out the RHS of the inequality
$$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
So, we have
$$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
which means that ${a_n}$ is an increasing sequence.
$endgroup$
add a comment |
$begingroup$
So, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
The author then applies Bernoulli's inequality to the first term on the RHS:
$$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
We can now return to the first equation and utilize this estimate; namely, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
Finally, we multiply out the RHS of the inequality
$$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
So, we have
$$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
which means that ${a_n}$ is an increasing sequence.
$endgroup$
So, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
The author then applies Bernoulli's inequality to the first term on the RHS:
$$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
We can now return to the first equation and utilize this estimate; namely, we have
$$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
Finally, we multiply out the RHS of the inequality
$$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
So, we have
$$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
which means that ${a_n}$ is an increasing sequence.
answered 33 mins ago
Gary MoonGary Moon
84116
84116
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165778%2fcan-someone-clarify-the-logic-behind-the-given-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown