Why the function ScalingFunctions does not work?





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







3












$begingroup$


Why highlighted in red and does not work function ScalingFunctions -> {None, "Reverse"} in ParametricPlot?



ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
-0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
{t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
AspectRatio -> 1, ScalingFunctions -> {None, "Reverse"}]









share|improve this question











$endgroup$












  • $begingroup$
    The option is not implemented for ParametricPlot. Compare Options[Plot, ScalingFunctions] with Options[ParametricPlot, ScalingFunctions].
    $endgroup$
    – Bob Hanlon
    May 20 at 13:55


















3












$begingroup$


Why highlighted in red and does not work function ScalingFunctions -> {None, "Reverse"} in ParametricPlot?



ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
-0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
{t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
AspectRatio -> 1, ScalingFunctions -> {None, "Reverse"}]









share|improve this question











$endgroup$












  • $begingroup$
    The option is not implemented for ParametricPlot. Compare Options[Plot, ScalingFunctions] with Options[ParametricPlot, ScalingFunctions].
    $endgroup$
    – Bob Hanlon
    May 20 at 13:55














3












3








3





$begingroup$


Why highlighted in red and does not work function ScalingFunctions -> {None, "Reverse"} in ParametricPlot?



ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
-0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
{t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
AspectRatio -> 1, ScalingFunctions -> {None, "Reverse"}]









share|improve this question











$endgroup$




Why highlighted in red and does not work function ScalingFunctions -> {None, "Reverse"} in ParametricPlot?



ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
-0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
{t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
AspectRatio -> 1, ScalingFunctions -> {None, "Reverse"}]






graphics parametric-functions






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 20 at 13:44









Bob Hanlon

63.8k3 gold badges36 silver badges99 bronze badges




63.8k3 gold badges36 silver badges99 bronze badges










asked May 20 at 13:28









ArtArt

233 bronze badges




233 bronze badges












  • $begingroup$
    The option is not implemented for ParametricPlot. Compare Options[Plot, ScalingFunctions] with Options[ParametricPlot, ScalingFunctions].
    $endgroup$
    – Bob Hanlon
    May 20 at 13:55


















  • $begingroup$
    The option is not implemented for ParametricPlot. Compare Options[Plot, ScalingFunctions] with Options[ParametricPlot, ScalingFunctions].
    $endgroup$
    – Bob Hanlon
    May 20 at 13:55
















$begingroup$
The option is not implemented for ParametricPlot. Compare Options[Plot, ScalingFunctions] with Options[ParametricPlot, ScalingFunctions].
$endgroup$
– Bob Hanlon
May 20 at 13:55




$begingroup$
The option is not implemented for ParametricPlot. Compare Options[Plot, ScalingFunctions] with Options[ParametricPlot, ScalingFunctions].
$endgroup$
– Bob Hanlon
May 20 at 13:55










2 Answers
2






active

oldest

votes


















6












$begingroup$

While ScalingFunctions is not documented to work with ParametricPlot, I think that is only because it fails when using it together with a PlotRange option. Take a look at the result of your ParametricPlot:



ParametricPlot[
{
0.06677273831511694*(1-E^(-8.145*t)),
-0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
},
{t,0,2.6},
PlotRange->{{0,0.07},{0.,3.0191292643518968`}},
AspectRatio->1,
ScalingFunctions->{None,"Reverse"}
]


enter image description here



Notice that the vertical plot range is actually {0, -3} and not {0, 3}. So, either remove the PlotRange option:



ParametricPlot[
{
0.06677273831511694*(1-E^(-8.145*t)),
-0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
},
{t,0,2.6},
AspectRatio->1,
ScalingFunctions->{None,"Reverse"}
]


enter image description here



or modify it to reflect the transform being used:



ParametricPlot[
{
0.06677273831511694*(1-E^(-8.145*t)),
-0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
},
{t,0,2.6},
PlotRange->{{0,0.07},{0.,-3.0191292643518968`}},
AspectRatio->1,
ScalingFunctions->{None, "Reverse"}
]


enter image description here



Another possibility is to use PlotRange -> All.






share|improve this answer









$endgroup$





















    3












    $begingroup$

    ScalingFunctions is not an option ParametricPlot.



    To get the desired look, you can post-process the output of ParametricPlot to vertically flip the coordinates of line objects (using ScalingTransform[{1,-1}]) and reverse the vertical axis tick labels using Charting`ScaledTicks["Reverse"]:



    Show[ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
    -0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
    {t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
    AspectRatio -> 1] /. Line[a_] :> Line[ScalingTransform[{1, -1}]@a],
    PlotRange -> All,
    Ticks -> {Automatic, Charting`ScaledTicks["Reverse"]}]


    enter image description here






    share|improve this answer









    $endgroup$
















      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f198711%2fwhy-the-function-scalingfunctions-does-not-work%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      While ScalingFunctions is not documented to work with ParametricPlot, I think that is only because it fails when using it together with a PlotRange option. Take a look at the result of your ParametricPlot:



      ParametricPlot[
      {
      0.06677273831511694*(1-E^(-8.145*t)),
      -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
      },
      {t,0,2.6},
      PlotRange->{{0,0.07},{0.,3.0191292643518968`}},
      AspectRatio->1,
      ScalingFunctions->{None,"Reverse"}
      ]


      enter image description here



      Notice that the vertical plot range is actually {0, -3} and not {0, 3}. So, either remove the PlotRange option:



      ParametricPlot[
      {
      0.06677273831511694*(1-E^(-8.145*t)),
      -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
      },
      {t,0,2.6},
      AspectRatio->1,
      ScalingFunctions->{None,"Reverse"}
      ]


      enter image description here



      or modify it to reflect the transform being used:



      ParametricPlot[
      {
      0.06677273831511694*(1-E^(-8.145*t)),
      -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
      },
      {t,0,2.6},
      PlotRange->{{0,0.07},{0.,-3.0191292643518968`}},
      AspectRatio->1,
      ScalingFunctions->{None, "Reverse"}
      ]


      enter image description here



      Another possibility is to use PlotRange -> All.






      share|improve this answer









      $endgroup$


















        6












        $begingroup$

        While ScalingFunctions is not documented to work with ParametricPlot, I think that is only because it fails when using it together with a PlotRange option. Take a look at the result of your ParametricPlot:



        ParametricPlot[
        {
        0.06677273831511694*(1-E^(-8.145*t)),
        -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
        },
        {t,0,2.6},
        PlotRange->{{0,0.07},{0.,3.0191292643518968`}},
        AspectRatio->1,
        ScalingFunctions->{None,"Reverse"}
        ]


        enter image description here



        Notice that the vertical plot range is actually {0, -3} and not {0, 3}. So, either remove the PlotRange option:



        ParametricPlot[
        {
        0.06677273831511694*(1-E^(-8.145*t)),
        -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
        },
        {t,0,2.6},
        AspectRatio->1,
        ScalingFunctions->{None,"Reverse"}
        ]


        enter image description here



        or modify it to reflect the transform being used:



        ParametricPlot[
        {
        0.06677273831511694*(1-E^(-8.145*t)),
        -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
        },
        {t,0,2.6},
        PlotRange->{{0,0.07},{0.,-3.0191292643518968`}},
        AspectRatio->1,
        ScalingFunctions->{None, "Reverse"}
        ]


        enter image description here



        Another possibility is to use PlotRange -> All.






        share|improve this answer









        $endgroup$
















          6












          6








          6





          $begingroup$

          While ScalingFunctions is not documented to work with ParametricPlot, I think that is only because it fails when using it together with a PlotRange option. Take a look at the result of your ParametricPlot:



          ParametricPlot[
          {
          0.06677273831511694*(1-E^(-8.145*t)),
          -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
          },
          {t,0,2.6},
          PlotRange->{{0,0.07},{0.,3.0191292643518968`}},
          AspectRatio->1,
          ScalingFunctions->{None,"Reverse"}
          ]


          enter image description here



          Notice that the vertical plot range is actually {0, -3} and not {0, 3}. So, either remove the PlotRange option:



          ParametricPlot[
          {
          0.06677273831511694*(1-E^(-8.145*t)),
          -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
          },
          {t,0,2.6},
          AspectRatio->1,
          ScalingFunctions->{None,"Reverse"}
          ]


          enter image description here



          or modify it to reflect the transform being used:



          ParametricPlot[
          {
          0.06677273831511694*(1-E^(-8.145*t)),
          -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
          },
          {t,0,2.6},
          PlotRange->{{0,0.07},{0.,-3.0191292643518968`}},
          AspectRatio->1,
          ScalingFunctions->{None, "Reverse"}
          ]


          enter image description here



          Another possibility is to use PlotRange -> All.






          share|improve this answer









          $endgroup$



          While ScalingFunctions is not documented to work with ParametricPlot, I think that is only because it fails when using it together with a PlotRange option. Take a look at the result of your ParametricPlot:



          ParametricPlot[
          {
          0.06677273831511694*(1-E^(-8.145*t)),
          -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
          },
          {t,0,2.6},
          PlotRange->{{0,0.07},{0.,3.0191292643518968`}},
          AspectRatio->1,
          ScalingFunctions->{None,"Reverse"}
          ]


          enter image description here



          Notice that the vertical plot range is actually {0, -3} and not {0, 3}. So, either remove the PlotRange option:



          ParametricPlot[
          {
          0.06677273831511694*(1-E^(-8.145*t)),
          -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
          },
          {t,0,2.6},
          AspectRatio->1,
          ScalingFunctions->{None,"Reverse"}
          ]


          enter image description here



          or modify it to reflect the transform being used:



          ParametricPlot[
          {
          0.06677273831511694*(1-E^(-8.145*t)),
          -0.10917030600597447*(1-E^(-8.145*t))+1.2031921424186618*t
          },
          {t,0,2.6},
          PlotRange->{{0,0.07},{0.,-3.0191292643518968`}},
          AspectRatio->1,
          ScalingFunctions->{None, "Reverse"}
          ]


          enter image description here



          Another possibility is to use PlotRange -> All.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered May 20 at 14:19









          Carl WollCarl Woll

          88.3k3 gold badges117 silver badges227 bronze badges




          88.3k3 gold badges117 silver badges227 bronze badges

























              3












              $begingroup$

              ScalingFunctions is not an option ParametricPlot.



              To get the desired look, you can post-process the output of ParametricPlot to vertically flip the coordinates of line objects (using ScalingTransform[{1,-1}]) and reverse the vertical axis tick labels using Charting`ScaledTicks["Reverse"]:



              Show[ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
              -0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
              {t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
              AspectRatio -> 1] /. Line[a_] :> Line[ScalingTransform[{1, -1}]@a],
              PlotRange -> All,
              Ticks -> {Automatic, Charting`ScaledTicks["Reverse"]}]


              enter image description here






              share|improve this answer









              $endgroup$


















                3












                $begingroup$

                ScalingFunctions is not an option ParametricPlot.



                To get the desired look, you can post-process the output of ParametricPlot to vertically flip the coordinates of line objects (using ScalingTransform[{1,-1}]) and reverse the vertical axis tick labels using Charting`ScaledTicks["Reverse"]:



                Show[ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
                -0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
                {t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
                AspectRatio -> 1] /. Line[a_] :> Line[ScalingTransform[{1, -1}]@a],
                PlotRange -> All,
                Ticks -> {Automatic, Charting`ScaledTicks["Reverse"]}]


                enter image description here






                share|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  ScalingFunctions is not an option ParametricPlot.



                  To get the desired look, you can post-process the output of ParametricPlot to vertically flip the coordinates of line objects (using ScalingTransform[{1,-1}]) and reverse the vertical axis tick labels using Charting`ScaledTicks["Reverse"]:



                  Show[ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
                  -0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
                  {t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
                  AspectRatio -> 1] /. Line[a_] :> Line[ScalingTransform[{1, -1}]@a],
                  PlotRange -> All,
                  Ticks -> {Automatic, Charting`ScaledTicks["Reverse"]}]


                  enter image description here






                  share|improve this answer









                  $endgroup$



                  ScalingFunctions is not an option ParametricPlot.



                  To get the desired look, you can post-process the output of ParametricPlot to vertically flip the coordinates of line objects (using ScalingTransform[{1,-1}]) and reverse the vertical axis tick labels using Charting`ScaledTicks["Reverse"]:



                  Show[ParametricPlot[{0.06677273831511694*(1 - E^(-8.145*t)),
                  -0.10917030600597447*(1 - E^(-8.145*t)) + 1.2031921424186618*t},
                  {t, 0, 2.6}, PlotRange -> {{0, 0.07}, {0., 3.0191292643518968`}},
                  AspectRatio -> 1] /. Line[a_] :> Line[ScalingTransform[{1, -1}]@a],
                  PlotRange -> All,
                  Ticks -> {Automatic, Charting`ScaledTicks["Reverse"]}]


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered May 20 at 13:59









                  kglrkglr

                  207k10 gold badges237 silver badges470 bronze badges




                  207k10 gold badges237 silver badges470 bronze badges






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f198711%2fwhy-the-function-scalingfunctions-does-not-work%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

                      Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                      He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome