How can a long spaceship combat torsion and shear stress while moving in space?












3












$begingroup$


Set in the late 22nd century AD, spaceship designs are becoming more streamlined and have longer bodies measuring from the tip at the front of ship to the thruster located at the back of the ship. The longitudinal strength of the body of the space vessel may experience different degrees of acceleration which contribute to stress inside the structure.



I am thinking of applying a pendulum similar to the one in tall buildings, especially in earthquake prone zones on Earth, the swinging of the weight to counteract the vibration caused by the swaying of the structure. But I don't think a pendulum would work in a spaceship.



How do I mitigate or negate the stress built up while moving in space? No FTL and adamantium/vibranium.










share|improve this question











$endgroup$












  • $begingroup$
    I'm not entirely sure that you need to- I think that this could be easily mitigated if you just lengthened the acceleration periods of the ship, as in you went from 1g to 3g's of acceleration gradually, instead of near instantly.
    $endgroup$
    – Dawnfire
    yesterday










  • $begingroup$
    @L.Dutch summed it up pretty well below.
    $endgroup$
    – Dawnfire
    yesterday






  • 8




    $begingroup$
    "spaceship designs are becoming more streamlined" why waste resources on streamlining things supposed to travel in hard vacuum?
    $endgroup$
    – Renan
    yesterday






  • 4




    $begingroup$
    @Renan: I always loved the description of ships in The Expanse novels: just boxes with a Drive come on one end and bits sticking out everywhere.
    $endgroup$
    – Joe Bloggs
    yesterday
















3












$begingroup$


Set in the late 22nd century AD, spaceship designs are becoming more streamlined and have longer bodies measuring from the tip at the front of ship to the thruster located at the back of the ship. The longitudinal strength of the body of the space vessel may experience different degrees of acceleration which contribute to stress inside the structure.



I am thinking of applying a pendulum similar to the one in tall buildings, especially in earthquake prone zones on Earth, the swinging of the weight to counteract the vibration caused by the swaying of the structure. But I don't think a pendulum would work in a spaceship.



How do I mitigate or negate the stress built up while moving in space? No FTL and adamantium/vibranium.










share|improve this question











$endgroup$












  • $begingroup$
    I'm not entirely sure that you need to- I think that this could be easily mitigated if you just lengthened the acceleration periods of the ship, as in you went from 1g to 3g's of acceleration gradually, instead of near instantly.
    $endgroup$
    – Dawnfire
    yesterday










  • $begingroup$
    @L.Dutch summed it up pretty well below.
    $endgroup$
    – Dawnfire
    yesterday






  • 8




    $begingroup$
    "spaceship designs are becoming more streamlined" why waste resources on streamlining things supposed to travel in hard vacuum?
    $endgroup$
    – Renan
    yesterday






  • 4




    $begingroup$
    @Renan: I always loved the description of ships in The Expanse novels: just boxes with a Drive come on one end and bits sticking out everywhere.
    $endgroup$
    – Joe Bloggs
    yesterday














3












3








3


1



$begingroup$


Set in the late 22nd century AD, spaceship designs are becoming more streamlined and have longer bodies measuring from the tip at the front of ship to the thruster located at the back of the ship. The longitudinal strength of the body of the space vessel may experience different degrees of acceleration which contribute to stress inside the structure.



I am thinking of applying a pendulum similar to the one in tall buildings, especially in earthquake prone zones on Earth, the swinging of the weight to counteract the vibration caused by the swaying of the structure. But I don't think a pendulum would work in a spaceship.



How do I mitigate or negate the stress built up while moving in space? No FTL and adamantium/vibranium.










share|improve this question











$endgroup$




Set in the late 22nd century AD, spaceship designs are becoming more streamlined and have longer bodies measuring from the tip at the front of ship to the thruster located at the back of the ship. The longitudinal strength of the body of the space vessel may experience different degrees of acceleration which contribute to stress inside the structure.



I am thinking of applying a pendulum similar to the one in tall buildings, especially in earthquake prone zones on Earth, the swinging of the weight to counteract the vibration caused by the swaying of the structure. But I don't think a pendulum would work in a spaceship.



How do I mitigate or negate the stress built up while moving in space? No FTL and adamantium/vibranium.







spaceships space-constructs construction shipbuilding






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 9 hours ago









Cyn

10.6k12348




10.6k12348










asked yesterday









user6760user6760

13.5k1675164




13.5k1675164












  • $begingroup$
    I'm not entirely sure that you need to- I think that this could be easily mitigated if you just lengthened the acceleration periods of the ship, as in you went from 1g to 3g's of acceleration gradually, instead of near instantly.
    $endgroup$
    – Dawnfire
    yesterday










  • $begingroup$
    @L.Dutch summed it up pretty well below.
    $endgroup$
    – Dawnfire
    yesterday






  • 8




    $begingroup$
    "spaceship designs are becoming more streamlined" why waste resources on streamlining things supposed to travel in hard vacuum?
    $endgroup$
    – Renan
    yesterday






  • 4




    $begingroup$
    @Renan: I always loved the description of ships in The Expanse novels: just boxes with a Drive come on one end and bits sticking out everywhere.
    $endgroup$
    – Joe Bloggs
    yesterday


















  • $begingroup$
    I'm not entirely sure that you need to- I think that this could be easily mitigated if you just lengthened the acceleration periods of the ship, as in you went from 1g to 3g's of acceleration gradually, instead of near instantly.
    $endgroup$
    – Dawnfire
    yesterday










  • $begingroup$
    @L.Dutch summed it up pretty well below.
    $endgroup$
    – Dawnfire
    yesterday






  • 8




    $begingroup$
    "spaceship designs are becoming more streamlined" why waste resources on streamlining things supposed to travel in hard vacuum?
    $endgroup$
    – Renan
    yesterday






  • 4




    $begingroup$
    @Renan: I always loved the description of ships in The Expanse novels: just boxes with a Drive come on one end and bits sticking out everywhere.
    $endgroup$
    – Joe Bloggs
    yesterday
















$begingroup$
I'm not entirely sure that you need to- I think that this could be easily mitigated if you just lengthened the acceleration periods of the ship, as in you went from 1g to 3g's of acceleration gradually, instead of near instantly.
$endgroup$
– Dawnfire
yesterday




$begingroup$
I'm not entirely sure that you need to- I think that this could be easily mitigated if you just lengthened the acceleration periods of the ship, as in you went from 1g to 3g's of acceleration gradually, instead of near instantly.
$endgroup$
– Dawnfire
yesterday












$begingroup$
@L.Dutch summed it up pretty well below.
$endgroup$
– Dawnfire
yesterday




$begingroup$
@L.Dutch summed it up pretty well below.
$endgroup$
– Dawnfire
yesterday




8




8




$begingroup$
"spaceship designs are becoming more streamlined" why waste resources on streamlining things supposed to travel in hard vacuum?
$endgroup$
– Renan
yesterday




$begingroup$
"spaceship designs are becoming more streamlined" why waste resources on streamlining things supposed to travel in hard vacuum?
$endgroup$
– Renan
yesterday




4




4




$begingroup$
@Renan: I always loved the description of ships in The Expanse novels: just boxes with a Drive come on one end and bits sticking out everywhere.
$endgroup$
– Joe Bloggs
yesterday




$begingroup$
@Renan: I always loved the description of ships in The Expanse novels: just boxes with a Drive come on one end and bits sticking out everywhere.
$endgroup$
– Joe Bloggs
yesterday










4 Answers
4






active

oldest

votes


















11












$begingroup$

I am not sure why you expect to have stress on a space ship. During travel in space the only forces acting on a ship would be gravitation attraction from some attractor in the surrounding and the vectorial thrust of the rockets, if active.



You would have no drag nor lift forces inducing torques on the structure. If your thrust vector is not passing through the center of mass, your ship will also rotate as a result. This is why anything we have sent to space had a much simpler structure than the Space Shuttle, that was supposed to dive into the atmosphere.



Just add some damping elements if you want to prevent resonating frequencies to damage your structure.






share|improve this answer









$endgroup$









  • 1




    $begingroup$
    In his defence,there's no talk about torque or rotational stresses, but if you had a strong thrust at the back you'd definitely get compression stresses running longitudinally along the central axis of the vessel. In that case a less severe acceleration over a longer length of time would make sense.
    $endgroup$
    – neophlegm
    yesterday










  • $begingroup$
    Damage from space combat could easily result in torsion and shear stresses, if you have a bunch of uneven holes punched through your ship's load-bearing members. If you have multiple engines on different parts of your ship to assist in rapid maneuvering/reorientation, that might produce them as well.
    $endgroup$
    – nick012000
    22 hours ago










  • $begingroup$
    @nick012000 if you have multiple engines on different parts then the whole problem is solved by smart control software.
    $endgroup$
    – Hobbamok
    22 hours ago










  • $begingroup$
    @nick012000 2 I don't believe that space battles would have much maneuvering. One fleet would be bunched together at one point and the other fleet would be bunched together at another point and the two fleets would be shooting missiles, ray guns, and particle weapons at each other at long distance. Aiming weapons would be the main action. Possibly one fleet would try to get closer to the other fleet and the other fleet would try to get farther away from the first fleet for various reasons.
    $endgroup$
    – M. A. Golding
    19 hours ago






  • 1




    $begingroup$
    Guys, anytime you want to change the direction the ship is pointing, you're going to have torsional stresses as the ship rotates around its center of mass. You can mitigate that somewhat with the placement of your thrusters (or whatever other mechanism you're using to rotate the ship), but it's a valid concern. The longer your ship is, the more stress is going to be felt, and the more slowly you have to change your orientation to avoid structural failure. There's an Alistair Reynolds novel (Pushing Ice) where this is a major plot point.
    $endgroup$
    – Morris The Cat
    16 hours ago



















1












$begingroup$

Ignoring the question of why they're making ships more streamlined for an environment without air resistance one answer may be to include thrusters at multiple points along the hull.



These multiple thrusters would work together to accelerate different parts of the ship at the same rate (rather than slowing the ship at one end and forcing the compression to accelerate the other end).



You would still experience some compression/stress in the areas between thrusters but if they were positioned correctly this could be minimised to a manageable amount.






share|improve this answer








New contributor




Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$









  • 2




    $begingroup$
    If they make spaceships travel fast enough they may need to design them as tall narrow cylinders to minimize their forward surfaces and minimize collisions with particles in space. At a fast enough speed hitting a speck of cosmic dust could result in an explosion with the force of an atomic bomb.
    $endgroup$
    – M. A. Golding
    19 hours ago










  • $begingroup$
    Hmm, potentially. I don't know what the maths would be for whether making the ship narrower actually decreases the risk by a significant amount. My initial thoughts would be that going fast enough for this to be a problem, the chance of hitting something wouldn't vary much depending on the size difference
    $endgroup$
    – Blinx
    18 hours ago






  • 1




    $begingroup$
    @Blinx What's your reasoning? I don't see why the cross-sectional area wouldn't be directly proportional to number of particle collisions.
    $endgroup$
    – Gene
    16 hours ago



















1












$begingroup$

One reason to have very long and seemingly streamlined ships might be they use a mass driver as their propulsion system. This offers some advantages in that the ship can theoretically use almost anything as reaction mass, and if the situation demands, the ship has a built in weapons system.




The excellent Atomic Rockets site contains this set of stats for a mass driver, but the exhaust velocity of 30 km/s isn't quite up to scratch for an interstellar spacecraft, even if you simply strap your craft to a convenient small asteroid to use for fuel. If we were to multiply the length of the drive by ten, according to the equation v2f=v2i+2aΔdvf2=vi2+2aΔd (relativistic effects are negligible at these velocities, so we can ignore them), for a mass driver with the same acceleration, but ten times longer, we get an exhaust velocity of a bit under 95km/s, which is quite a bit nicer, even though we had to increase the mass of the drive and its power source by a factor of ten.




So you can envision the ship being essentially a long "boom" representing the mass driver sticking out the tail of the ship. With large radiators it might even resemble a dragonfly.



enter image description here



Elegant spacecraft design



However, if the ship is undergoing hard maneuvering in space (perhaps it is a warship), then the best design might be similar to a paper airplane. The long "fins" are the radiators, but they work like trusses to keep the mass driver rigid and stable. While paper airplanes usually have 3 fins, a spacecraft is likely to be symmetric and have 4 equally spaced fins to brace the mass driver.



enter image description here



Classic paper airplane. Visualize the fins as the radiators bracing the mass driver in the centre






share|improve this answer









$endgroup$





















    0












    $begingroup$

    Ok, so the forces you're describing are generally only going to come into play when your ship is experiencing force that's NOT being applied along its longitudinal axis. Generally that's only going to happen if something hits you, or anytime you need to change the direction your ship is pointing. In either of those cases, you're going to have forces trying to 'bend' your ship out of the straight line.



    In the case of maneuvering adjustments, the best way to manage this is by spreading the forces that are rotating the ship along its entire length. While you get the most mechanical advantage by putting your maneuvering thrusters as far from your ship's center of mass as possible (because leverage), this also creates the most stress. Spreading your thrusters out along the entire length of the ship also spreads those stresses out so that no particular area is likely to accumulate failure.



    This is ALSO a good way to try and manage the forces associated with a collision, assuming that the a: you see it coming and b: it's not enough force to shear your ship in half outright. An impact against the side of your long skinny ship is effectively going to apply force to the the part of the ship it impacts which may cause that location to experience acceleration the rest of your ship can't keep up with, at which point structural failure ensures.



    If you know something is going to slam into the side of your ship, you would want to have all your maneuvering thrusters pushing the entire ship along the same vector in which the collision is occurring, and the further from the point of impact it is, the more thrust you want.






    share|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "579"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f142272%2fhow-can-a-long-spaceship-combat-torsion-and-shear-stress-while-moving-in-space%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      I am not sure why you expect to have stress on a space ship. During travel in space the only forces acting on a ship would be gravitation attraction from some attractor in the surrounding and the vectorial thrust of the rockets, if active.



      You would have no drag nor lift forces inducing torques on the structure. If your thrust vector is not passing through the center of mass, your ship will also rotate as a result. This is why anything we have sent to space had a much simpler structure than the Space Shuttle, that was supposed to dive into the atmosphere.



      Just add some damping elements if you want to prevent resonating frequencies to damage your structure.






      share|improve this answer









      $endgroup$









      • 1




        $begingroup$
        In his defence,there's no talk about torque or rotational stresses, but if you had a strong thrust at the back you'd definitely get compression stresses running longitudinally along the central axis of the vessel. In that case a less severe acceleration over a longer length of time would make sense.
        $endgroup$
        – neophlegm
        yesterday










      • $begingroup$
        Damage from space combat could easily result in torsion and shear stresses, if you have a bunch of uneven holes punched through your ship's load-bearing members. If you have multiple engines on different parts of your ship to assist in rapid maneuvering/reorientation, that might produce them as well.
        $endgroup$
        – nick012000
        22 hours ago










      • $begingroup$
        @nick012000 if you have multiple engines on different parts then the whole problem is solved by smart control software.
        $endgroup$
        – Hobbamok
        22 hours ago










      • $begingroup$
        @nick012000 2 I don't believe that space battles would have much maneuvering. One fleet would be bunched together at one point and the other fleet would be bunched together at another point and the two fleets would be shooting missiles, ray guns, and particle weapons at each other at long distance. Aiming weapons would be the main action. Possibly one fleet would try to get closer to the other fleet and the other fleet would try to get farther away from the first fleet for various reasons.
        $endgroup$
        – M. A. Golding
        19 hours ago






      • 1




        $begingroup$
        Guys, anytime you want to change the direction the ship is pointing, you're going to have torsional stresses as the ship rotates around its center of mass. You can mitigate that somewhat with the placement of your thrusters (or whatever other mechanism you're using to rotate the ship), but it's a valid concern. The longer your ship is, the more stress is going to be felt, and the more slowly you have to change your orientation to avoid structural failure. There's an Alistair Reynolds novel (Pushing Ice) where this is a major plot point.
        $endgroup$
        – Morris The Cat
        16 hours ago
















      11












      $begingroup$

      I am not sure why you expect to have stress on a space ship. During travel in space the only forces acting on a ship would be gravitation attraction from some attractor in the surrounding and the vectorial thrust of the rockets, if active.



      You would have no drag nor lift forces inducing torques on the structure. If your thrust vector is not passing through the center of mass, your ship will also rotate as a result. This is why anything we have sent to space had a much simpler structure than the Space Shuttle, that was supposed to dive into the atmosphere.



      Just add some damping elements if you want to prevent resonating frequencies to damage your structure.






      share|improve this answer









      $endgroup$









      • 1




        $begingroup$
        In his defence,there's no talk about torque or rotational stresses, but if you had a strong thrust at the back you'd definitely get compression stresses running longitudinally along the central axis of the vessel. In that case a less severe acceleration over a longer length of time would make sense.
        $endgroup$
        – neophlegm
        yesterday










      • $begingroup$
        Damage from space combat could easily result in torsion and shear stresses, if you have a bunch of uneven holes punched through your ship's load-bearing members. If you have multiple engines on different parts of your ship to assist in rapid maneuvering/reorientation, that might produce them as well.
        $endgroup$
        – nick012000
        22 hours ago










      • $begingroup$
        @nick012000 if you have multiple engines on different parts then the whole problem is solved by smart control software.
        $endgroup$
        – Hobbamok
        22 hours ago










      • $begingroup$
        @nick012000 2 I don't believe that space battles would have much maneuvering. One fleet would be bunched together at one point and the other fleet would be bunched together at another point and the two fleets would be shooting missiles, ray guns, and particle weapons at each other at long distance. Aiming weapons would be the main action. Possibly one fleet would try to get closer to the other fleet and the other fleet would try to get farther away from the first fleet for various reasons.
        $endgroup$
        – M. A. Golding
        19 hours ago






      • 1




        $begingroup$
        Guys, anytime you want to change the direction the ship is pointing, you're going to have torsional stresses as the ship rotates around its center of mass. You can mitigate that somewhat with the placement of your thrusters (or whatever other mechanism you're using to rotate the ship), but it's a valid concern. The longer your ship is, the more stress is going to be felt, and the more slowly you have to change your orientation to avoid structural failure. There's an Alistair Reynolds novel (Pushing Ice) where this is a major plot point.
        $endgroup$
        – Morris The Cat
        16 hours ago














      11












      11








      11





      $begingroup$

      I am not sure why you expect to have stress on a space ship. During travel in space the only forces acting on a ship would be gravitation attraction from some attractor in the surrounding and the vectorial thrust of the rockets, if active.



      You would have no drag nor lift forces inducing torques on the structure. If your thrust vector is not passing through the center of mass, your ship will also rotate as a result. This is why anything we have sent to space had a much simpler structure than the Space Shuttle, that was supposed to dive into the atmosphere.



      Just add some damping elements if you want to prevent resonating frequencies to damage your structure.






      share|improve this answer









      $endgroup$



      I am not sure why you expect to have stress on a space ship. During travel in space the only forces acting on a ship would be gravitation attraction from some attractor in the surrounding and the vectorial thrust of the rockets, if active.



      You would have no drag nor lift forces inducing torques on the structure. If your thrust vector is not passing through the center of mass, your ship will also rotate as a result. This is why anything we have sent to space had a much simpler structure than the Space Shuttle, that was supposed to dive into the atmosphere.



      Just add some damping elements if you want to prevent resonating frequencies to damage your structure.







      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered yesterday









      L.DutchL.Dutch

      88.7k29207432




      88.7k29207432








      • 1




        $begingroup$
        In his defence,there's no talk about torque or rotational stresses, but if you had a strong thrust at the back you'd definitely get compression stresses running longitudinally along the central axis of the vessel. In that case a less severe acceleration over a longer length of time would make sense.
        $endgroup$
        – neophlegm
        yesterday










      • $begingroup$
        Damage from space combat could easily result in torsion and shear stresses, if you have a bunch of uneven holes punched through your ship's load-bearing members. If you have multiple engines on different parts of your ship to assist in rapid maneuvering/reorientation, that might produce them as well.
        $endgroup$
        – nick012000
        22 hours ago










      • $begingroup$
        @nick012000 if you have multiple engines on different parts then the whole problem is solved by smart control software.
        $endgroup$
        – Hobbamok
        22 hours ago










      • $begingroup$
        @nick012000 2 I don't believe that space battles would have much maneuvering. One fleet would be bunched together at one point and the other fleet would be bunched together at another point and the two fleets would be shooting missiles, ray guns, and particle weapons at each other at long distance. Aiming weapons would be the main action. Possibly one fleet would try to get closer to the other fleet and the other fleet would try to get farther away from the first fleet for various reasons.
        $endgroup$
        – M. A. Golding
        19 hours ago






      • 1




        $begingroup$
        Guys, anytime you want to change the direction the ship is pointing, you're going to have torsional stresses as the ship rotates around its center of mass. You can mitigate that somewhat with the placement of your thrusters (or whatever other mechanism you're using to rotate the ship), but it's a valid concern. The longer your ship is, the more stress is going to be felt, and the more slowly you have to change your orientation to avoid structural failure. There's an Alistair Reynolds novel (Pushing Ice) where this is a major plot point.
        $endgroup$
        – Morris The Cat
        16 hours ago














      • 1




        $begingroup$
        In his defence,there's no talk about torque or rotational stresses, but if you had a strong thrust at the back you'd definitely get compression stresses running longitudinally along the central axis of the vessel. In that case a less severe acceleration over a longer length of time would make sense.
        $endgroup$
        – neophlegm
        yesterday










      • $begingroup$
        Damage from space combat could easily result in torsion and shear stresses, if you have a bunch of uneven holes punched through your ship's load-bearing members. If you have multiple engines on different parts of your ship to assist in rapid maneuvering/reorientation, that might produce them as well.
        $endgroup$
        – nick012000
        22 hours ago










      • $begingroup$
        @nick012000 if you have multiple engines on different parts then the whole problem is solved by smart control software.
        $endgroup$
        – Hobbamok
        22 hours ago










      • $begingroup$
        @nick012000 2 I don't believe that space battles would have much maneuvering. One fleet would be bunched together at one point and the other fleet would be bunched together at another point and the two fleets would be shooting missiles, ray guns, and particle weapons at each other at long distance. Aiming weapons would be the main action. Possibly one fleet would try to get closer to the other fleet and the other fleet would try to get farther away from the first fleet for various reasons.
        $endgroup$
        – M. A. Golding
        19 hours ago






      • 1




        $begingroup$
        Guys, anytime you want to change the direction the ship is pointing, you're going to have torsional stresses as the ship rotates around its center of mass. You can mitigate that somewhat with the placement of your thrusters (or whatever other mechanism you're using to rotate the ship), but it's a valid concern. The longer your ship is, the more stress is going to be felt, and the more slowly you have to change your orientation to avoid structural failure. There's an Alistair Reynolds novel (Pushing Ice) where this is a major plot point.
        $endgroup$
        – Morris The Cat
        16 hours ago








      1




      1




      $begingroup$
      In his defence,there's no talk about torque or rotational stresses, but if you had a strong thrust at the back you'd definitely get compression stresses running longitudinally along the central axis of the vessel. In that case a less severe acceleration over a longer length of time would make sense.
      $endgroup$
      – neophlegm
      yesterday




      $begingroup$
      In his defence,there's no talk about torque or rotational stresses, but if you had a strong thrust at the back you'd definitely get compression stresses running longitudinally along the central axis of the vessel. In that case a less severe acceleration over a longer length of time would make sense.
      $endgroup$
      – neophlegm
      yesterday












      $begingroup$
      Damage from space combat could easily result in torsion and shear stresses, if you have a bunch of uneven holes punched through your ship's load-bearing members. If you have multiple engines on different parts of your ship to assist in rapid maneuvering/reorientation, that might produce them as well.
      $endgroup$
      – nick012000
      22 hours ago




      $begingroup$
      Damage from space combat could easily result in torsion and shear stresses, if you have a bunch of uneven holes punched through your ship's load-bearing members. If you have multiple engines on different parts of your ship to assist in rapid maneuvering/reorientation, that might produce them as well.
      $endgroup$
      – nick012000
      22 hours ago












      $begingroup$
      @nick012000 if you have multiple engines on different parts then the whole problem is solved by smart control software.
      $endgroup$
      – Hobbamok
      22 hours ago




      $begingroup$
      @nick012000 if you have multiple engines on different parts then the whole problem is solved by smart control software.
      $endgroup$
      – Hobbamok
      22 hours ago












      $begingroup$
      @nick012000 2 I don't believe that space battles would have much maneuvering. One fleet would be bunched together at one point and the other fleet would be bunched together at another point and the two fleets would be shooting missiles, ray guns, and particle weapons at each other at long distance. Aiming weapons would be the main action. Possibly one fleet would try to get closer to the other fleet and the other fleet would try to get farther away from the first fleet for various reasons.
      $endgroup$
      – M. A. Golding
      19 hours ago




      $begingroup$
      @nick012000 2 I don't believe that space battles would have much maneuvering. One fleet would be bunched together at one point and the other fleet would be bunched together at another point and the two fleets would be shooting missiles, ray guns, and particle weapons at each other at long distance. Aiming weapons would be the main action. Possibly one fleet would try to get closer to the other fleet and the other fleet would try to get farther away from the first fleet for various reasons.
      $endgroup$
      – M. A. Golding
      19 hours ago




      1




      1




      $begingroup$
      Guys, anytime you want to change the direction the ship is pointing, you're going to have torsional stresses as the ship rotates around its center of mass. You can mitigate that somewhat with the placement of your thrusters (or whatever other mechanism you're using to rotate the ship), but it's a valid concern. The longer your ship is, the more stress is going to be felt, and the more slowly you have to change your orientation to avoid structural failure. There's an Alistair Reynolds novel (Pushing Ice) where this is a major plot point.
      $endgroup$
      – Morris The Cat
      16 hours ago




      $begingroup$
      Guys, anytime you want to change the direction the ship is pointing, you're going to have torsional stresses as the ship rotates around its center of mass. You can mitigate that somewhat with the placement of your thrusters (or whatever other mechanism you're using to rotate the ship), but it's a valid concern. The longer your ship is, the more stress is going to be felt, and the more slowly you have to change your orientation to avoid structural failure. There's an Alistair Reynolds novel (Pushing Ice) where this is a major plot point.
      $endgroup$
      – Morris The Cat
      16 hours ago











      1












      $begingroup$

      Ignoring the question of why they're making ships more streamlined for an environment without air resistance one answer may be to include thrusters at multiple points along the hull.



      These multiple thrusters would work together to accelerate different parts of the ship at the same rate (rather than slowing the ship at one end and forcing the compression to accelerate the other end).



      You would still experience some compression/stress in the areas between thrusters but if they were positioned correctly this could be minimised to a manageable amount.






      share|improve this answer








      New contributor




      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$









      • 2




        $begingroup$
        If they make spaceships travel fast enough they may need to design them as tall narrow cylinders to minimize their forward surfaces and minimize collisions with particles in space. At a fast enough speed hitting a speck of cosmic dust could result in an explosion with the force of an atomic bomb.
        $endgroup$
        – M. A. Golding
        19 hours ago










      • $begingroup$
        Hmm, potentially. I don't know what the maths would be for whether making the ship narrower actually decreases the risk by a significant amount. My initial thoughts would be that going fast enough for this to be a problem, the chance of hitting something wouldn't vary much depending on the size difference
        $endgroup$
        – Blinx
        18 hours ago






      • 1




        $begingroup$
        @Blinx What's your reasoning? I don't see why the cross-sectional area wouldn't be directly proportional to number of particle collisions.
        $endgroup$
        – Gene
        16 hours ago
















      1












      $begingroup$

      Ignoring the question of why they're making ships more streamlined for an environment without air resistance one answer may be to include thrusters at multiple points along the hull.



      These multiple thrusters would work together to accelerate different parts of the ship at the same rate (rather than slowing the ship at one end and forcing the compression to accelerate the other end).



      You would still experience some compression/stress in the areas between thrusters but if they were positioned correctly this could be minimised to a manageable amount.






      share|improve this answer








      New contributor




      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$









      • 2




        $begingroup$
        If they make spaceships travel fast enough they may need to design them as tall narrow cylinders to minimize their forward surfaces and minimize collisions with particles in space. At a fast enough speed hitting a speck of cosmic dust could result in an explosion with the force of an atomic bomb.
        $endgroup$
        – M. A. Golding
        19 hours ago










      • $begingroup$
        Hmm, potentially. I don't know what the maths would be for whether making the ship narrower actually decreases the risk by a significant amount. My initial thoughts would be that going fast enough for this to be a problem, the chance of hitting something wouldn't vary much depending on the size difference
        $endgroup$
        – Blinx
        18 hours ago






      • 1




        $begingroup$
        @Blinx What's your reasoning? I don't see why the cross-sectional area wouldn't be directly proportional to number of particle collisions.
        $endgroup$
        – Gene
        16 hours ago














      1












      1








      1





      $begingroup$

      Ignoring the question of why they're making ships more streamlined for an environment without air resistance one answer may be to include thrusters at multiple points along the hull.



      These multiple thrusters would work together to accelerate different parts of the ship at the same rate (rather than slowing the ship at one end and forcing the compression to accelerate the other end).



      You would still experience some compression/stress in the areas between thrusters but if they were positioned correctly this could be minimised to a manageable amount.






      share|improve this answer








      New contributor




      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$



      Ignoring the question of why they're making ships more streamlined for an environment without air resistance one answer may be to include thrusters at multiple points along the hull.



      These multiple thrusters would work together to accelerate different parts of the ship at the same rate (rather than slowing the ship at one end and forcing the compression to accelerate the other end).



      You would still experience some compression/stress in the areas between thrusters but if they were positioned correctly this could be minimised to a manageable amount.







      share|improve this answer








      New contributor




      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this answer



      share|improve this answer






      New contributor




      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      answered 21 hours ago









      BlinxBlinx

      111




      111




      New contributor




      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Blinx is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      • 2




        $begingroup$
        If they make spaceships travel fast enough they may need to design them as tall narrow cylinders to minimize their forward surfaces and minimize collisions with particles in space. At a fast enough speed hitting a speck of cosmic dust could result in an explosion with the force of an atomic bomb.
        $endgroup$
        – M. A. Golding
        19 hours ago










      • $begingroup$
        Hmm, potentially. I don't know what the maths would be for whether making the ship narrower actually decreases the risk by a significant amount. My initial thoughts would be that going fast enough for this to be a problem, the chance of hitting something wouldn't vary much depending on the size difference
        $endgroup$
        – Blinx
        18 hours ago






      • 1




        $begingroup$
        @Blinx What's your reasoning? I don't see why the cross-sectional area wouldn't be directly proportional to number of particle collisions.
        $endgroup$
        – Gene
        16 hours ago














      • 2




        $begingroup$
        If they make spaceships travel fast enough they may need to design them as tall narrow cylinders to minimize their forward surfaces and minimize collisions with particles in space. At a fast enough speed hitting a speck of cosmic dust could result in an explosion with the force of an atomic bomb.
        $endgroup$
        – M. A. Golding
        19 hours ago










      • $begingroup$
        Hmm, potentially. I don't know what the maths would be for whether making the ship narrower actually decreases the risk by a significant amount. My initial thoughts would be that going fast enough for this to be a problem, the chance of hitting something wouldn't vary much depending on the size difference
        $endgroup$
        – Blinx
        18 hours ago






      • 1




        $begingroup$
        @Blinx What's your reasoning? I don't see why the cross-sectional area wouldn't be directly proportional to number of particle collisions.
        $endgroup$
        – Gene
        16 hours ago








      2




      2




      $begingroup$
      If they make spaceships travel fast enough they may need to design them as tall narrow cylinders to minimize their forward surfaces and minimize collisions with particles in space. At a fast enough speed hitting a speck of cosmic dust could result in an explosion with the force of an atomic bomb.
      $endgroup$
      – M. A. Golding
      19 hours ago




      $begingroup$
      If they make spaceships travel fast enough they may need to design them as tall narrow cylinders to minimize their forward surfaces and minimize collisions with particles in space. At a fast enough speed hitting a speck of cosmic dust could result in an explosion with the force of an atomic bomb.
      $endgroup$
      – M. A. Golding
      19 hours ago












      $begingroup$
      Hmm, potentially. I don't know what the maths would be for whether making the ship narrower actually decreases the risk by a significant amount. My initial thoughts would be that going fast enough for this to be a problem, the chance of hitting something wouldn't vary much depending on the size difference
      $endgroup$
      – Blinx
      18 hours ago




      $begingroup$
      Hmm, potentially. I don't know what the maths would be for whether making the ship narrower actually decreases the risk by a significant amount. My initial thoughts would be that going fast enough for this to be a problem, the chance of hitting something wouldn't vary much depending on the size difference
      $endgroup$
      – Blinx
      18 hours ago




      1




      1




      $begingroup$
      @Blinx What's your reasoning? I don't see why the cross-sectional area wouldn't be directly proportional to number of particle collisions.
      $endgroup$
      – Gene
      16 hours ago




      $begingroup$
      @Blinx What's your reasoning? I don't see why the cross-sectional area wouldn't be directly proportional to number of particle collisions.
      $endgroup$
      – Gene
      16 hours ago











      1












      $begingroup$

      One reason to have very long and seemingly streamlined ships might be they use a mass driver as their propulsion system. This offers some advantages in that the ship can theoretically use almost anything as reaction mass, and if the situation demands, the ship has a built in weapons system.




      The excellent Atomic Rockets site contains this set of stats for a mass driver, but the exhaust velocity of 30 km/s isn't quite up to scratch for an interstellar spacecraft, even if you simply strap your craft to a convenient small asteroid to use for fuel. If we were to multiply the length of the drive by ten, according to the equation v2f=v2i+2aΔdvf2=vi2+2aΔd (relativistic effects are negligible at these velocities, so we can ignore them), for a mass driver with the same acceleration, but ten times longer, we get an exhaust velocity of a bit under 95km/s, which is quite a bit nicer, even though we had to increase the mass of the drive and its power source by a factor of ten.




      So you can envision the ship being essentially a long "boom" representing the mass driver sticking out the tail of the ship. With large radiators it might even resemble a dragonfly.



      enter image description here



      Elegant spacecraft design



      However, if the ship is undergoing hard maneuvering in space (perhaps it is a warship), then the best design might be similar to a paper airplane. The long "fins" are the radiators, but they work like trusses to keep the mass driver rigid and stable. While paper airplanes usually have 3 fins, a spacecraft is likely to be symmetric and have 4 equally spaced fins to brace the mass driver.



      enter image description here



      Classic paper airplane. Visualize the fins as the radiators bracing the mass driver in the centre






      share|improve this answer









      $endgroup$


















        1












        $begingroup$

        One reason to have very long and seemingly streamlined ships might be they use a mass driver as their propulsion system. This offers some advantages in that the ship can theoretically use almost anything as reaction mass, and if the situation demands, the ship has a built in weapons system.




        The excellent Atomic Rockets site contains this set of stats for a mass driver, but the exhaust velocity of 30 km/s isn't quite up to scratch for an interstellar spacecraft, even if you simply strap your craft to a convenient small asteroid to use for fuel. If we were to multiply the length of the drive by ten, according to the equation v2f=v2i+2aΔdvf2=vi2+2aΔd (relativistic effects are negligible at these velocities, so we can ignore them), for a mass driver with the same acceleration, but ten times longer, we get an exhaust velocity of a bit under 95km/s, which is quite a bit nicer, even though we had to increase the mass of the drive and its power source by a factor of ten.




        So you can envision the ship being essentially a long "boom" representing the mass driver sticking out the tail of the ship. With large radiators it might even resemble a dragonfly.



        enter image description here



        Elegant spacecraft design



        However, if the ship is undergoing hard maneuvering in space (perhaps it is a warship), then the best design might be similar to a paper airplane. The long "fins" are the radiators, but they work like trusses to keep the mass driver rigid and stable. While paper airplanes usually have 3 fins, a spacecraft is likely to be symmetric and have 4 equally spaced fins to brace the mass driver.



        enter image description here



        Classic paper airplane. Visualize the fins as the radiators bracing the mass driver in the centre






        share|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          One reason to have very long and seemingly streamlined ships might be they use a mass driver as their propulsion system. This offers some advantages in that the ship can theoretically use almost anything as reaction mass, and if the situation demands, the ship has a built in weapons system.




          The excellent Atomic Rockets site contains this set of stats for a mass driver, but the exhaust velocity of 30 km/s isn't quite up to scratch for an interstellar spacecraft, even if you simply strap your craft to a convenient small asteroid to use for fuel. If we were to multiply the length of the drive by ten, according to the equation v2f=v2i+2aΔdvf2=vi2+2aΔd (relativistic effects are negligible at these velocities, so we can ignore them), for a mass driver with the same acceleration, but ten times longer, we get an exhaust velocity of a bit under 95km/s, which is quite a bit nicer, even though we had to increase the mass of the drive and its power source by a factor of ten.




          So you can envision the ship being essentially a long "boom" representing the mass driver sticking out the tail of the ship. With large radiators it might even resemble a dragonfly.



          enter image description here



          Elegant spacecraft design



          However, if the ship is undergoing hard maneuvering in space (perhaps it is a warship), then the best design might be similar to a paper airplane. The long "fins" are the radiators, but they work like trusses to keep the mass driver rigid and stable. While paper airplanes usually have 3 fins, a spacecraft is likely to be symmetric and have 4 equally spaced fins to brace the mass driver.



          enter image description here



          Classic paper airplane. Visualize the fins as the radiators bracing the mass driver in the centre






          share|improve this answer









          $endgroup$



          One reason to have very long and seemingly streamlined ships might be they use a mass driver as their propulsion system. This offers some advantages in that the ship can theoretically use almost anything as reaction mass, and if the situation demands, the ship has a built in weapons system.




          The excellent Atomic Rockets site contains this set of stats for a mass driver, but the exhaust velocity of 30 km/s isn't quite up to scratch for an interstellar spacecraft, even if you simply strap your craft to a convenient small asteroid to use for fuel. If we were to multiply the length of the drive by ten, according to the equation v2f=v2i+2aΔdvf2=vi2+2aΔd (relativistic effects are negligible at these velocities, so we can ignore them), for a mass driver with the same acceleration, but ten times longer, we get an exhaust velocity of a bit under 95km/s, which is quite a bit nicer, even though we had to increase the mass of the drive and its power source by a factor of ten.




          So you can envision the ship being essentially a long "boom" representing the mass driver sticking out the tail of the ship. With large radiators it might even resemble a dragonfly.



          enter image description here



          Elegant spacecraft design



          However, if the ship is undergoing hard maneuvering in space (perhaps it is a warship), then the best design might be similar to a paper airplane. The long "fins" are the radiators, but they work like trusses to keep the mass driver rigid and stable. While paper airplanes usually have 3 fins, a spacecraft is likely to be symmetric and have 4 equally spaced fins to brace the mass driver.



          enter image description here



          Classic paper airplane. Visualize the fins as the radiators bracing the mass driver in the centre







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 8 hours ago









          ThucydidesThucydides

          82.4k679246




          82.4k679246























              0












              $begingroup$

              Ok, so the forces you're describing are generally only going to come into play when your ship is experiencing force that's NOT being applied along its longitudinal axis. Generally that's only going to happen if something hits you, or anytime you need to change the direction your ship is pointing. In either of those cases, you're going to have forces trying to 'bend' your ship out of the straight line.



              In the case of maneuvering adjustments, the best way to manage this is by spreading the forces that are rotating the ship along its entire length. While you get the most mechanical advantage by putting your maneuvering thrusters as far from your ship's center of mass as possible (because leverage), this also creates the most stress. Spreading your thrusters out along the entire length of the ship also spreads those stresses out so that no particular area is likely to accumulate failure.



              This is ALSO a good way to try and manage the forces associated with a collision, assuming that the a: you see it coming and b: it's not enough force to shear your ship in half outright. An impact against the side of your long skinny ship is effectively going to apply force to the the part of the ship it impacts which may cause that location to experience acceleration the rest of your ship can't keep up with, at which point structural failure ensures.



              If you know something is going to slam into the side of your ship, you would want to have all your maneuvering thrusters pushing the entire ship along the same vector in which the collision is occurring, and the further from the point of impact it is, the more thrust you want.






              share|improve this answer











              $endgroup$


















                0












                $begingroup$

                Ok, so the forces you're describing are generally only going to come into play when your ship is experiencing force that's NOT being applied along its longitudinal axis. Generally that's only going to happen if something hits you, or anytime you need to change the direction your ship is pointing. In either of those cases, you're going to have forces trying to 'bend' your ship out of the straight line.



                In the case of maneuvering adjustments, the best way to manage this is by spreading the forces that are rotating the ship along its entire length. While you get the most mechanical advantage by putting your maneuvering thrusters as far from your ship's center of mass as possible (because leverage), this also creates the most stress. Spreading your thrusters out along the entire length of the ship also spreads those stresses out so that no particular area is likely to accumulate failure.



                This is ALSO a good way to try and manage the forces associated with a collision, assuming that the a: you see it coming and b: it's not enough force to shear your ship in half outright. An impact against the side of your long skinny ship is effectively going to apply force to the the part of the ship it impacts which may cause that location to experience acceleration the rest of your ship can't keep up with, at which point structural failure ensures.



                If you know something is going to slam into the side of your ship, you would want to have all your maneuvering thrusters pushing the entire ship along the same vector in which the collision is occurring, and the further from the point of impact it is, the more thrust you want.






                share|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Ok, so the forces you're describing are generally only going to come into play when your ship is experiencing force that's NOT being applied along its longitudinal axis. Generally that's only going to happen if something hits you, or anytime you need to change the direction your ship is pointing. In either of those cases, you're going to have forces trying to 'bend' your ship out of the straight line.



                  In the case of maneuvering adjustments, the best way to manage this is by spreading the forces that are rotating the ship along its entire length. While you get the most mechanical advantage by putting your maneuvering thrusters as far from your ship's center of mass as possible (because leverage), this also creates the most stress. Spreading your thrusters out along the entire length of the ship also spreads those stresses out so that no particular area is likely to accumulate failure.



                  This is ALSO a good way to try and manage the forces associated with a collision, assuming that the a: you see it coming and b: it's not enough force to shear your ship in half outright. An impact against the side of your long skinny ship is effectively going to apply force to the the part of the ship it impacts which may cause that location to experience acceleration the rest of your ship can't keep up with, at which point structural failure ensures.



                  If you know something is going to slam into the side of your ship, you would want to have all your maneuvering thrusters pushing the entire ship along the same vector in which the collision is occurring, and the further from the point of impact it is, the more thrust you want.






                  share|improve this answer











                  $endgroup$



                  Ok, so the forces you're describing are generally only going to come into play when your ship is experiencing force that's NOT being applied along its longitudinal axis. Generally that's only going to happen if something hits you, or anytime you need to change the direction your ship is pointing. In either of those cases, you're going to have forces trying to 'bend' your ship out of the straight line.



                  In the case of maneuvering adjustments, the best way to manage this is by spreading the forces that are rotating the ship along its entire length. While you get the most mechanical advantage by putting your maneuvering thrusters as far from your ship's center of mass as possible (because leverage), this also creates the most stress. Spreading your thrusters out along the entire length of the ship also spreads those stresses out so that no particular area is likely to accumulate failure.



                  This is ALSO a good way to try and manage the forces associated with a collision, assuming that the a: you see it coming and b: it's not enough force to shear your ship in half outright. An impact against the side of your long skinny ship is effectively going to apply force to the the part of the ship it impacts which may cause that location to experience acceleration the rest of your ship can't keep up with, at which point structural failure ensures.



                  If you know something is going to slam into the side of your ship, you would want to have all your maneuvering thrusters pushing the entire ship along the same vector in which the collision is occurring, and the further from the point of impact it is, the more thrust you want.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 16 hours ago

























                  answered 16 hours ago









                  Morris The CatMorris The Cat

                  3,085519




                  3,085519






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Worldbuilding Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f142272%2fhow-can-a-long-spaceship-combat-torsion-and-shear-stress-while-moving-in-space%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                      Bunad

                      Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum