Structured binding on const
Is the following code supposed to compile?
#include <type_traits>
void foo() {
const std::pair<int, int> x = {1, 2};
auto [a, b] = x;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
MSVC says "yes!".
GCC says "oh no, man!".
Clang says "no way!".
So, is this an MSVC bug?
The standard is not straightforward here (I had a quick look), but considering the rules for auto
, I suppose, a
and b
should be copied discarding cv-qualifier.
c++ c++17 structured-bindings
add a comment |
Is the following code supposed to compile?
#include <type_traits>
void foo() {
const std::pair<int, int> x = {1, 2};
auto [a, b] = x;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
MSVC says "yes!".
GCC says "oh no, man!".
Clang says "no way!".
So, is this an MSVC bug?
The standard is not straightforward here (I had a quick look), but considering the rules for auto
, I suppose, a
and b
should be copied discarding cv-qualifier.
c++ c++17 structured-bindings
add a comment |
Is the following code supposed to compile?
#include <type_traits>
void foo() {
const std::pair<int, int> x = {1, 2};
auto [a, b] = x;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
MSVC says "yes!".
GCC says "oh no, man!".
Clang says "no way!".
So, is this an MSVC bug?
The standard is not straightforward here (I had a quick look), but considering the rules for auto
, I suppose, a
and b
should be copied discarding cv-qualifier.
c++ c++17 structured-bindings
Is the following code supposed to compile?
#include <type_traits>
void foo() {
const std::pair<int, int> x = {1, 2};
auto [a, b] = x;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
MSVC says "yes!".
GCC says "oh no, man!".
Clang says "no way!".
So, is this an MSVC bug?
The standard is not straightforward here (I had a quick look), but considering the rules for auto
, I suppose, a
and b
should be copied discarding cv-qualifier.
c++ c++17 structured-bindings
c++ c++17 structured-bindings
edited 20 hours ago
einpoklum
36.2k28132260
36.2k28132260
asked yesterday
Biagio FestaBiagio Festa
5,21021240
5,21021240
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Is the following code supposed to compile?
It is not. This is an MSVC bug.
A structured binding declaration introduces a new name (for specification only), e
, that is declared like:
auto e = x;
The type of e
is called E
, and since the initializer is tuple-like, the types of the bindings are given by tuple_element_t<i, E>
. In this case E
is pair<int, int>
, so the two types are just int
. The rule for decltype
of a structured binding is to give the referenced type, so decltype(a)
and decltype(b)
are both int
.
The important part here is that a
and b
(the structured bindings) come from the invented variable (e
), and not its initializer (x
). e
is not const
because you just declared it auto
. What we're doing is copying x
, and then taking bindings into this (non-const
) copy.
add a comment |
The static assertions in your code should fail. Why? Because your code is basically the same as the case of:
#include <type_traits>
void foo() {
const int x_1 = 1;
const int x_2 = 2;
auto a = x_1;
auto b = x_2;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
which does indeed fail on MSVC as well.
In C++ expression types decay on assignment: the auto
sees an int
, not a const int
. Structured binding simply lets you do more than a single auto
binding at a time.
... and so the fact that MSVC doesn't fail on the assertions in your code seems to be a bug.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55329651%2fstructured-binding-on-const%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Is the following code supposed to compile?
It is not. This is an MSVC bug.
A structured binding declaration introduces a new name (for specification only), e
, that is declared like:
auto e = x;
The type of e
is called E
, and since the initializer is tuple-like, the types of the bindings are given by tuple_element_t<i, E>
. In this case E
is pair<int, int>
, so the two types are just int
. The rule for decltype
of a structured binding is to give the referenced type, so decltype(a)
and decltype(b)
are both int
.
The important part here is that a
and b
(the structured bindings) come from the invented variable (e
), and not its initializer (x
). e
is not const
because you just declared it auto
. What we're doing is copying x
, and then taking bindings into this (non-const
) copy.
add a comment |
Is the following code supposed to compile?
It is not. This is an MSVC bug.
A structured binding declaration introduces a new name (for specification only), e
, that is declared like:
auto e = x;
The type of e
is called E
, and since the initializer is tuple-like, the types of the bindings are given by tuple_element_t<i, E>
. In this case E
is pair<int, int>
, so the two types are just int
. The rule for decltype
of a structured binding is to give the referenced type, so decltype(a)
and decltype(b)
are both int
.
The important part here is that a
and b
(the structured bindings) come from the invented variable (e
), and not its initializer (x
). e
is not const
because you just declared it auto
. What we're doing is copying x
, and then taking bindings into this (non-const
) copy.
add a comment |
Is the following code supposed to compile?
It is not. This is an MSVC bug.
A structured binding declaration introduces a new name (for specification only), e
, that is declared like:
auto e = x;
The type of e
is called E
, and since the initializer is tuple-like, the types of the bindings are given by tuple_element_t<i, E>
. In this case E
is pair<int, int>
, so the two types are just int
. The rule for decltype
of a structured binding is to give the referenced type, so decltype(a)
and decltype(b)
are both int
.
The important part here is that a
and b
(the structured bindings) come from the invented variable (e
), and not its initializer (x
). e
is not const
because you just declared it auto
. What we're doing is copying x
, and then taking bindings into this (non-const
) copy.
Is the following code supposed to compile?
It is not. This is an MSVC bug.
A structured binding declaration introduces a new name (for specification only), e
, that is declared like:
auto e = x;
The type of e
is called E
, and since the initializer is tuple-like, the types of the bindings are given by tuple_element_t<i, E>
. In this case E
is pair<int, int>
, so the two types are just int
. The rule for decltype
of a structured binding is to give the referenced type, so decltype(a)
and decltype(b)
are both int
.
The important part here is that a
and b
(the structured bindings) come from the invented variable (e
), and not its initializer (x
). e
is not const
because you just declared it auto
. What we're doing is copying x
, and then taking bindings into this (non-const
) copy.
answered yesterday
BarryBarry
185k21326601
185k21326601
add a comment |
add a comment |
The static assertions in your code should fail. Why? Because your code is basically the same as the case of:
#include <type_traits>
void foo() {
const int x_1 = 1;
const int x_2 = 2;
auto a = x_1;
auto b = x_2;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
which does indeed fail on MSVC as well.
In C++ expression types decay on assignment: the auto
sees an int
, not a const int
. Structured binding simply lets you do more than a single auto
binding at a time.
... and so the fact that MSVC doesn't fail on the assertions in your code seems to be a bug.
add a comment |
The static assertions in your code should fail. Why? Because your code is basically the same as the case of:
#include <type_traits>
void foo() {
const int x_1 = 1;
const int x_2 = 2;
auto a = x_1;
auto b = x_2;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
which does indeed fail on MSVC as well.
In C++ expression types decay on assignment: the auto
sees an int
, not a const int
. Structured binding simply lets you do more than a single auto
binding at a time.
... and so the fact that MSVC doesn't fail on the assertions in your code seems to be a bug.
add a comment |
The static assertions in your code should fail. Why? Because your code is basically the same as the case of:
#include <type_traits>
void foo() {
const int x_1 = 1;
const int x_2 = 2;
auto a = x_1;
auto b = x_2;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
which does indeed fail on MSVC as well.
In C++ expression types decay on assignment: the auto
sees an int
, not a const int
. Structured binding simply lets you do more than a single auto
binding at a time.
... and so the fact that MSVC doesn't fail on the assertions in your code seems to be a bug.
The static assertions in your code should fail. Why? Because your code is basically the same as the case of:
#include <type_traits>
void foo() {
const int x_1 = 1;
const int x_2 = 2;
auto a = x_1;
auto b = x_2;
static_assert(std::is_const_v<decltype(a)>);
static_assert(std::is_const_v<decltype(b)>);
}
which does indeed fail on MSVC as well.
In C++ expression types decay on assignment: the auto
sees an int
, not a const int
. Structured binding simply lets you do more than a single auto
binding at a time.
... and so the fact that MSVC doesn't fail on the assertions in your code seems to be a bug.
edited 11 hours ago
answered yesterday
einpoklumeinpoklum
36.2k28132260
36.2k28132260
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55329651%2fstructured-binding-on-const%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown