Is there an efficient solution to the travelling salesman problem with binary edge weights? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I verify a solution to Travelling Salesman Problem in polynomial time?Travelling salesman problem with detoursEvolutionary algorithm for the Physical Travelling Salesman ProblemTravelling Salesman Problem with unknown shortest paths between nodesWhat if the travelling salesman travelled by plane?Traveling salesman problem with disconnected cities / infinite length edgeTravelling salesman problem with small edge weightsWhy does Travelling Salesman Problem pose the restriction that each vertex can only be visited once?Travelling Salesman problem using Guided Local SearchIf I can solve Sudoku, can I solve the Travelling Salesman Problem (TSP)? If so, how?

NIntegrate on a solution of a matrix ODE

Sally's older brother

Centre cell vertically in tabularx

Why not use the yoke to control yaw, as well as pitch and roll?

Inverse square law not accurate for non-point masses?

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?

Is this Kuo-toa homebrew race balanced?

3D Masyu - A Die

Can two people see the same photon?

Does the universe have a fixed centre of mass?

Weaponising the Grasp-at-a-Distance spell

How do you write "wild blueberries flavored"?

Relating to the President and obstruction, were Mueller's conclusions preordained?

Is the time—manner—place ordering of adverbials an oversimplification?

2018 MacBook Pro won't let me install macOS High Sierra 10.13 from USB installer

Twin's vs. Twins'

Is it OK to use the testing sample to compare algorithms?

Short story about astronauts fertilizing soil with their own bodies

Releasing Patch File for BSD3 Licensed Project

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?

Any stored/leased 737s that could substitute for grounded MAXs?

Determine whether an integer is a palindrome

When does a function NOT have an antiderivative?

The test team as an enemy of development? And how can this be avoided?



Is there an efficient solution to the travelling salesman problem with binary edge weights?



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?How can I verify a solution to Travelling Salesman Problem in polynomial time?Travelling salesman problem with detoursEvolutionary algorithm for the Physical Travelling Salesman ProblemTravelling Salesman Problem with unknown shortest paths between nodesWhat if the travelling salesman travelled by plane?Traveling salesman problem with disconnected cities / infinite length edgeTravelling salesman problem with small edge weightsWhy does Travelling Salesman Problem pose the restriction that each vertex can only be visited once?Travelling Salesman problem using Guided Local SearchIf I can solve Sudoku, can I solve the Travelling Salesman Problem (TSP)? If so, how?










3












$begingroup$


Is there a way to solve TSP in polynomial time if there are only two kinds of weights, 0 and 1?










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    Is there a way to solve TSP in polynomial time if there are only two kinds of weights, 0 and 1?










    share|cite|improve this question











    $endgroup$














      3












      3








      3


      2



      $begingroup$


      Is there a way to solve TSP in polynomial time if there are only two kinds of weights, 0 and 1?










      share|cite|improve this question











      $endgroup$




      Is there a way to solve TSP in polynomial time if there are only two kinds of weights, 0 and 1?







      traveling-salesman






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 24 at 11:13









      Apass.Jack

      14.4k1940




      14.4k1940










      asked Mar 24 at 7:33









      WiccanKarnakWiccanKarnak

      1185




      1185




















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          No, since if every edge has weight 1, there is still the question of whether any such tour exists, which is the Hamiltonian Cycle problem, and this is still NP-hard. (The link is to a Wikipedia page for Hamiltonian Path -- both the path and cycle versions of the problem are hard.)






          share|cite|improve this answer









          $endgroup$








          • 3




            $begingroup$
            I initially read the question with the assumption it's asking about complete graphs - but then you can still get the Hamiltonian Cycle problem by asking if a zero-length Hamiltonian cycle exists. And if you allow retrace, the problem becomes trivial.
            $endgroup$
            – John Dvorak
            Mar 24 at 11:16











          • $begingroup$
            @JohnDvorak thanks a lot, is there a way if I guarantee no Hamiltonian Cycles?
            $endgroup$
            – WiccanKarnak
            Mar 24 at 14:43










          • $begingroup$
            Every complete graph has a Hamiltonian cycle. And if your graph doesn't have a Hamiltonian cycle ... then it definitely doesn't have a Hamiltonian cycle, so what was the question again?
            $endgroup$
            – John Dvorak
            Mar 24 at 15:00











          • $begingroup$
            @WiccanKarnak : (A TSP solution is a Hamiltonian cycle ... of minimal total weight.)
            $endgroup$
            – Eric Towers
            Mar 24 at 19:39










          • $begingroup$
            Aren't you allowed to use the same edge twice in TSP?
            $endgroup$
            – immibis
            Mar 24 at 22:00


















          2












          $begingroup$

          The accepted answer isn't quite right. An instance of TSP consists of a distance between every pair of cities: that is, it consists of a weighted complete graph. Every complete graph has a Hamiltonian cycle.



          However, it is simple to reduce HAMILTON-CYCLE to $0$$1$ TSP. Given a graph $G$, create a TSP instance where the cities are the vertices and the distance is $0$ if there is an edge between the cities and $1$ if there is not. Then $G$ has a Hamiltonian cyle if, and only if, the TSP instance has a tour of weight zero. Therefore, $0$$1$ TSP is NP-complete.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This is a good point, though the choice of whether to require the input graph to be complete or not never makes a practical difference (for the purpose of finding a distance-minimal tour, missing edges in a graph can be encoded as arbitrarily-distant edges in a complete graph). Interestingly, in looking for a definitively canonical definition of the TSP problem, I found that on p. 211 of Garey & Johnson (1979) they require the edge weights to be in $mathbb Z^+$ -- i.e., 0-length edges are forbidden, meaning that for them, the "0-1 TSP" described here is technically not a special case of TSP!
            $endgroup$
            – j_random_hacker
            Mar 25 at 11:24










          • $begingroup$
            @j_random_hacker It's a good job I'm only throwing small stones in my glass house! (Actually, you can reduce $0$-$1$ TSP to $1$-$2$ TSP by just adding one to every edge weight and adding $n$ to the length of the path you're looking for.)
            $endgroup$
            – David Richerby
            Mar 25 at 11:29












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "419"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105984%2fis-there-an-efficient-solution-to-the-travelling-salesman-problem-with-binary-ed%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          No, since if every edge has weight 1, there is still the question of whether any such tour exists, which is the Hamiltonian Cycle problem, and this is still NP-hard. (The link is to a Wikipedia page for Hamiltonian Path -- both the path and cycle versions of the problem are hard.)






          share|cite|improve this answer









          $endgroup$








          • 3




            $begingroup$
            I initially read the question with the assumption it's asking about complete graphs - but then you can still get the Hamiltonian Cycle problem by asking if a zero-length Hamiltonian cycle exists. And if you allow retrace, the problem becomes trivial.
            $endgroup$
            – John Dvorak
            Mar 24 at 11:16











          • $begingroup$
            @JohnDvorak thanks a lot, is there a way if I guarantee no Hamiltonian Cycles?
            $endgroup$
            – WiccanKarnak
            Mar 24 at 14:43










          • $begingroup$
            Every complete graph has a Hamiltonian cycle. And if your graph doesn't have a Hamiltonian cycle ... then it definitely doesn't have a Hamiltonian cycle, so what was the question again?
            $endgroup$
            – John Dvorak
            Mar 24 at 15:00











          • $begingroup$
            @WiccanKarnak : (A TSP solution is a Hamiltonian cycle ... of minimal total weight.)
            $endgroup$
            – Eric Towers
            Mar 24 at 19:39










          • $begingroup$
            Aren't you allowed to use the same edge twice in TSP?
            $endgroup$
            – immibis
            Mar 24 at 22:00















          7












          $begingroup$

          No, since if every edge has weight 1, there is still the question of whether any such tour exists, which is the Hamiltonian Cycle problem, and this is still NP-hard. (The link is to a Wikipedia page for Hamiltonian Path -- both the path and cycle versions of the problem are hard.)






          share|cite|improve this answer









          $endgroup$








          • 3




            $begingroup$
            I initially read the question with the assumption it's asking about complete graphs - but then you can still get the Hamiltonian Cycle problem by asking if a zero-length Hamiltonian cycle exists. And if you allow retrace, the problem becomes trivial.
            $endgroup$
            – John Dvorak
            Mar 24 at 11:16











          • $begingroup$
            @JohnDvorak thanks a lot, is there a way if I guarantee no Hamiltonian Cycles?
            $endgroup$
            – WiccanKarnak
            Mar 24 at 14:43










          • $begingroup$
            Every complete graph has a Hamiltonian cycle. And if your graph doesn't have a Hamiltonian cycle ... then it definitely doesn't have a Hamiltonian cycle, so what was the question again?
            $endgroup$
            – John Dvorak
            Mar 24 at 15:00











          • $begingroup$
            @WiccanKarnak : (A TSP solution is a Hamiltonian cycle ... of minimal total weight.)
            $endgroup$
            – Eric Towers
            Mar 24 at 19:39










          • $begingroup$
            Aren't you allowed to use the same edge twice in TSP?
            $endgroup$
            – immibis
            Mar 24 at 22:00













          7












          7








          7





          $begingroup$

          No, since if every edge has weight 1, there is still the question of whether any such tour exists, which is the Hamiltonian Cycle problem, and this is still NP-hard. (The link is to a Wikipedia page for Hamiltonian Path -- both the path and cycle versions of the problem are hard.)






          share|cite|improve this answer









          $endgroup$



          No, since if every edge has weight 1, there is still the question of whether any such tour exists, which is the Hamiltonian Cycle problem, and this is still NP-hard. (The link is to a Wikipedia page for Hamiltonian Path -- both the path and cycle versions of the problem are hard.)







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 24 at 8:39









          j_random_hackerj_random_hacker

          3,02711016




          3,02711016







          • 3




            $begingroup$
            I initially read the question with the assumption it's asking about complete graphs - but then you can still get the Hamiltonian Cycle problem by asking if a zero-length Hamiltonian cycle exists. And if you allow retrace, the problem becomes trivial.
            $endgroup$
            – John Dvorak
            Mar 24 at 11:16











          • $begingroup$
            @JohnDvorak thanks a lot, is there a way if I guarantee no Hamiltonian Cycles?
            $endgroup$
            – WiccanKarnak
            Mar 24 at 14:43










          • $begingroup$
            Every complete graph has a Hamiltonian cycle. And if your graph doesn't have a Hamiltonian cycle ... then it definitely doesn't have a Hamiltonian cycle, so what was the question again?
            $endgroup$
            – John Dvorak
            Mar 24 at 15:00











          • $begingroup$
            @WiccanKarnak : (A TSP solution is a Hamiltonian cycle ... of minimal total weight.)
            $endgroup$
            – Eric Towers
            Mar 24 at 19:39










          • $begingroup$
            Aren't you allowed to use the same edge twice in TSP?
            $endgroup$
            – immibis
            Mar 24 at 22:00












          • 3




            $begingroup$
            I initially read the question with the assumption it's asking about complete graphs - but then you can still get the Hamiltonian Cycle problem by asking if a zero-length Hamiltonian cycle exists. And if you allow retrace, the problem becomes trivial.
            $endgroup$
            – John Dvorak
            Mar 24 at 11:16











          • $begingroup$
            @JohnDvorak thanks a lot, is there a way if I guarantee no Hamiltonian Cycles?
            $endgroup$
            – WiccanKarnak
            Mar 24 at 14:43










          • $begingroup$
            Every complete graph has a Hamiltonian cycle. And if your graph doesn't have a Hamiltonian cycle ... then it definitely doesn't have a Hamiltonian cycle, so what was the question again?
            $endgroup$
            – John Dvorak
            Mar 24 at 15:00











          • $begingroup$
            @WiccanKarnak : (A TSP solution is a Hamiltonian cycle ... of minimal total weight.)
            $endgroup$
            – Eric Towers
            Mar 24 at 19:39










          • $begingroup$
            Aren't you allowed to use the same edge twice in TSP?
            $endgroup$
            – immibis
            Mar 24 at 22:00







          3




          3




          $begingroup$
          I initially read the question with the assumption it's asking about complete graphs - but then you can still get the Hamiltonian Cycle problem by asking if a zero-length Hamiltonian cycle exists. And if you allow retrace, the problem becomes trivial.
          $endgroup$
          – John Dvorak
          Mar 24 at 11:16





          $begingroup$
          I initially read the question with the assumption it's asking about complete graphs - but then you can still get the Hamiltonian Cycle problem by asking if a zero-length Hamiltonian cycle exists. And if you allow retrace, the problem becomes trivial.
          $endgroup$
          – John Dvorak
          Mar 24 at 11:16













          $begingroup$
          @JohnDvorak thanks a lot, is there a way if I guarantee no Hamiltonian Cycles?
          $endgroup$
          – WiccanKarnak
          Mar 24 at 14:43




          $begingroup$
          @JohnDvorak thanks a lot, is there a way if I guarantee no Hamiltonian Cycles?
          $endgroup$
          – WiccanKarnak
          Mar 24 at 14:43












          $begingroup$
          Every complete graph has a Hamiltonian cycle. And if your graph doesn't have a Hamiltonian cycle ... then it definitely doesn't have a Hamiltonian cycle, so what was the question again?
          $endgroup$
          – John Dvorak
          Mar 24 at 15:00





          $begingroup$
          Every complete graph has a Hamiltonian cycle. And if your graph doesn't have a Hamiltonian cycle ... then it definitely doesn't have a Hamiltonian cycle, so what was the question again?
          $endgroup$
          – John Dvorak
          Mar 24 at 15:00













          $begingroup$
          @WiccanKarnak : (A TSP solution is a Hamiltonian cycle ... of minimal total weight.)
          $endgroup$
          – Eric Towers
          Mar 24 at 19:39




          $begingroup$
          @WiccanKarnak : (A TSP solution is a Hamiltonian cycle ... of minimal total weight.)
          $endgroup$
          – Eric Towers
          Mar 24 at 19:39












          $begingroup$
          Aren't you allowed to use the same edge twice in TSP?
          $endgroup$
          – immibis
          Mar 24 at 22:00




          $begingroup$
          Aren't you allowed to use the same edge twice in TSP?
          $endgroup$
          – immibis
          Mar 24 at 22:00











          2












          $begingroup$

          The accepted answer isn't quite right. An instance of TSP consists of a distance between every pair of cities: that is, it consists of a weighted complete graph. Every complete graph has a Hamiltonian cycle.



          However, it is simple to reduce HAMILTON-CYCLE to $0$$1$ TSP. Given a graph $G$, create a TSP instance where the cities are the vertices and the distance is $0$ if there is an edge between the cities and $1$ if there is not. Then $G$ has a Hamiltonian cyle if, and only if, the TSP instance has a tour of weight zero. Therefore, $0$$1$ TSP is NP-complete.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This is a good point, though the choice of whether to require the input graph to be complete or not never makes a practical difference (for the purpose of finding a distance-minimal tour, missing edges in a graph can be encoded as arbitrarily-distant edges in a complete graph). Interestingly, in looking for a definitively canonical definition of the TSP problem, I found that on p. 211 of Garey & Johnson (1979) they require the edge weights to be in $mathbb Z^+$ -- i.e., 0-length edges are forbidden, meaning that for them, the "0-1 TSP" described here is technically not a special case of TSP!
            $endgroup$
            – j_random_hacker
            Mar 25 at 11:24










          • $begingroup$
            @j_random_hacker It's a good job I'm only throwing small stones in my glass house! (Actually, you can reduce $0$-$1$ TSP to $1$-$2$ TSP by just adding one to every edge weight and adding $n$ to the length of the path you're looking for.)
            $endgroup$
            – David Richerby
            Mar 25 at 11:29
















          2












          $begingroup$

          The accepted answer isn't quite right. An instance of TSP consists of a distance between every pair of cities: that is, it consists of a weighted complete graph. Every complete graph has a Hamiltonian cycle.



          However, it is simple to reduce HAMILTON-CYCLE to $0$$1$ TSP. Given a graph $G$, create a TSP instance where the cities are the vertices and the distance is $0$ if there is an edge between the cities and $1$ if there is not. Then $G$ has a Hamiltonian cyle if, and only if, the TSP instance has a tour of weight zero. Therefore, $0$$1$ TSP is NP-complete.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This is a good point, though the choice of whether to require the input graph to be complete or not never makes a practical difference (for the purpose of finding a distance-minimal tour, missing edges in a graph can be encoded as arbitrarily-distant edges in a complete graph). Interestingly, in looking for a definitively canonical definition of the TSP problem, I found that on p. 211 of Garey & Johnson (1979) they require the edge weights to be in $mathbb Z^+$ -- i.e., 0-length edges are forbidden, meaning that for them, the "0-1 TSP" described here is technically not a special case of TSP!
            $endgroup$
            – j_random_hacker
            Mar 25 at 11:24










          • $begingroup$
            @j_random_hacker It's a good job I'm only throwing small stones in my glass house! (Actually, you can reduce $0$-$1$ TSP to $1$-$2$ TSP by just adding one to every edge weight and adding $n$ to the length of the path you're looking for.)
            $endgroup$
            – David Richerby
            Mar 25 at 11:29














          2












          2








          2





          $begingroup$

          The accepted answer isn't quite right. An instance of TSP consists of a distance between every pair of cities: that is, it consists of a weighted complete graph. Every complete graph has a Hamiltonian cycle.



          However, it is simple to reduce HAMILTON-CYCLE to $0$$1$ TSP. Given a graph $G$, create a TSP instance where the cities are the vertices and the distance is $0$ if there is an edge between the cities and $1$ if there is not. Then $G$ has a Hamiltonian cyle if, and only if, the TSP instance has a tour of weight zero. Therefore, $0$$1$ TSP is NP-complete.






          share|cite|improve this answer









          $endgroup$



          The accepted answer isn't quite right. An instance of TSP consists of a distance between every pair of cities: that is, it consists of a weighted complete graph. Every complete graph has a Hamiltonian cycle.



          However, it is simple to reduce HAMILTON-CYCLE to $0$$1$ TSP. Given a graph $G$, create a TSP instance where the cities are the vertices and the distance is $0$ if there is an edge between the cities and $1$ if there is not. Then $G$ has a Hamiltonian cyle if, and only if, the TSP instance has a tour of weight zero. Therefore, $0$$1$ TSP is NP-complete.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 24 at 20:20









          David RicherbyDavid Richerby

          70.8k16108198




          70.8k16108198











          • $begingroup$
            This is a good point, though the choice of whether to require the input graph to be complete or not never makes a practical difference (for the purpose of finding a distance-minimal tour, missing edges in a graph can be encoded as arbitrarily-distant edges in a complete graph). Interestingly, in looking for a definitively canonical definition of the TSP problem, I found that on p. 211 of Garey & Johnson (1979) they require the edge weights to be in $mathbb Z^+$ -- i.e., 0-length edges are forbidden, meaning that for them, the "0-1 TSP" described here is technically not a special case of TSP!
            $endgroup$
            – j_random_hacker
            Mar 25 at 11:24










          • $begingroup$
            @j_random_hacker It's a good job I'm only throwing small stones in my glass house! (Actually, you can reduce $0$-$1$ TSP to $1$-$2$ TSP by just adding one to every edge weight and adding $n$ to the length of the path you're looking for.)
            $endgroup$
            – David Richerby
            Mar 25 at 11:29

















          • $begingroup$
            This is a good point, though the choice of whether to require the input graph to be complete or not never makes a practical difference (for the purpose of finding a distance-minimal tour, missing edges in a graph can be encoded as arbitrarily-distant edges in a complete graph). Interestingly, in looking for a definitively canonical definition of the TSP problem, I found that on p. 211 of Garey & Johnson (1979) they require the edge weights to be in $mathbb Z^+$ -- i.e., 0-length edges are forbidden, meaning that for them, the "0-1 TSP" described here is technically not a special case of TSP!
            $endgroup$
            – j_random_hacker
            Mar 25 at 11:24










          • $begingroup$
            @j_random_hacker It's a good job I'm only throwing small stones in my glass house! (Actually, you can reduce $0$-$1$ TSP to $1$-$2$ TSP by just adding one to every edge weight and adding $n$ to the length of the path you're looking for.)
            $endgroup$
            – David Richerby
            Mar 25 at 11:29
















          $begingroup$
          This is a good point, though the choice of whether to require the input graph to be complete or not never makes a practical difference (for the purpose of finding a distance-minimal tour, missing edges in a graph can be encoded as arbitrarily-distant edges in a complete graph). Interestingly, in looking for a definitively canonical definition of the TSP problem, I found that on p. 211 of Garey & Johnson (1979) they require the edge weights to be in $mathbb Z^+$ -- i.e., 0-length edges are forbidden, meaning that for them, the "0-1 TSP" described here is technically not a special case of TSP!
          $endgroup$
          – j_random_hacker
          Mar 25 at 11:24




          $begingroup$
          This is a good point, though the choice of whether to require the input graph to be complete or not never makes a practical difference (for the purpose of finding a distance-minimal tour, missing edges in a graph can be encoded as arbitrarily-distant edges in a complete graph). Interestingly, in looking for a definitively canonical definition of the TSP problem, I found that on p. 211 of Garey & Johnson (1979) they require the edge weights to be in $mathbb Z^+$ -- i.e., 0-length edges are forbidden, meaning that for them, the "0-1 TSP" described here is technically not a special case of TSP!
          $endgroup$
          – j_random_hacker
          Mar 25 at 11:24












          $begingroup$
          @j_random_hacker It's a good job I'm only throwing small stones in my glass house! (Actually, you can reduce $0$-$1$ TSP to $1$-$2$ TSP by just adding one to every edge weight and adding $n$ to the length of the path you're looking for.)
          $endgroup$
          – David Richerby
          Mar 25 at 11:29





          $begingroup$
          @j_random_hacker It's a good job I'm only throwing small stones in my glass house! (Actually, you can reduce $0$-$1$ TSP to $1$-$2$ TSP by just adding one to every edge weight and adding $n$ to the length of the path you're looking for.)
          $endgroup$
          – David Richerby
          Mar 25 at 11:29


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Computer Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105984%2fis-there-an-efficient-solution-to-the-travelling-salesman-problem-with-binary-ed%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

          Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

          He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome