Proof of Lemma: Every integer can be written as a product of primes












9












$begingroup$


I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m, n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?



Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.










share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    yesterday






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 4




    $begingroup$
    It's a valid proof by infinite descent (a.k.a. minimal criminal), the contrapositive of induction - see the Remark here. You should master both this (negative) and the normal (positive) form of induction.
    $endgroup$
    – Bill Dubuque
    yesterday








  • 3




    $begingroup$
    $-1$ is an integer, and is not prime...
    $endgroup$
    – Gerrit0
    yesterday






  • 1




    $begingroup$
    @AndreasRejbrand According to the textbook, if p is a prime then -p is a prime :/
    $endgroup$
    – Alena Gusakov
    18 hours ago
















9












$begingroup$


I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m, n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?



Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.










share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    yesterday






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 4




    $begingroup$
    It's a valid proof by infinite descent (a.k.a. minimal criminal), the contrapositive of induction - see the Remark here. You should master both this (negative) and the normal (positive) form of induction.
    $endgroup$
    – Bill Dubuque
    yesterday








  • 3




    $begingroup$
    $-1$ is an integer, and is not prime...
    $endgroup$
    – Gerrit0
    yesterday






  • 1




    $begingroup$
    @AndreasRejbrand According to the textbook, if p is a prime then -p is a prime :/
    $endgroup$
    – Alena Gusakov
    18 hours ago














9












9








9


1



$begingroup$


I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m, n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?



Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.










share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m, n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?



Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.







elementary-number-theory prime-numbers proof-explanation integers






share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 12 hours ago









mrtaurho

6,09771641




6,09771641






New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









Alena GusakovAlena Gusakov

4915




4915




New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    yesterday






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 4




    $begingroup$
    It's a valid proof by infinite descent (a.k.a. minimal criminal), the contrapositive of induction - see the Remark here. You should master both this (negative) and the normal (positive) form of induction.
    $endgroup$
    – Bill Dubuque
    yesterday








  • 3




    $begingroup$
    $-1$ is an integer, and is not prime...
    $endgroup$
    – Gerrit0
    yesterday






  • 1




    $begingroup$
    @AndreasRejbrand According to the textbook, if p is a prime then -p is a prime :/
    $endgroup$
    – Alena Gusakov
    18 hours ago














  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    yesterday






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 4




    $begingroup$
    It's a valid proof by infinite descent (a.k.a. minimal criminal), the contrapositive of induction - see the Remark here. You should master both this (negative) and the normal (positive) form of induction.
    $endgroup$
    – Bill Dubuque
    yesterday








  • 3




    $begingroup$
    $-1$ is an integer, and is not prime...
    $endgroup$
    – Gerrit0
    yesterday






  • 1




    $begingroup$
    @AndreasRejbrand According to the textbook, if p is a prime then -p is a prime :/
    $endgroup$
    – Alena Gusakov
    18 hours ago








2




2




$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
yesterday




$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
yesterday




1




1




$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
yesterday




$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
yesterday




4




4




$begingroup$
It's a valid proof by infinite descent (a.k.a. minimal criminal), the contrapositive of induction - see the Remark here. You should master both this (negative) and the normal (positive) form of induction.
$endgroup$
– Bill Dubuque
yesterday






$begingroup$
It's a valid proof by infinite descent (a.k.a. minimal criminal), the contrapositive of induction - see the Remark here. You should master both this (negative) and the normal (positive) form of induction.
$endgroup$
– Bill Dubuque
yesterday






3




3




$begingroup$
$-1$ is an integer, and is not prime...
$endgroup$
– Gerrit0
yesterday




$begingroup$
$-1$ is an integer, and is not prime...
$endgroup$
– Gerrit0
yesterday




1




1




$begingroup$
@AndreasRejbrand According to the textbook, if p is a prime then -p is a prime :/
$endgroup$
– Alena Gusakov
18 hours ago




$begingroup$
@AndreasRejbrand According to the textbook, if p is a prime then -p is a prime :/
$endgroup$
– Alena Gusakov
18 hours ago










7 Answers
7






active

oldest

votes


















17












$begingroup$

Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







share|cite|improve this answer









$endgroup$









  • 11




    $begingroup$
    This is equivalent, so how is it "so much clearer"? Personally, I find the original clearer.
    $endgroup$
    – John Coleman
    23 hours ago










  • $begingroup$
    +1 for “the direct proof by induction is so much clearer”. I’ve seen so many unnecessary proofs by induction.
    $endgroup$
    – Bob Krueger
    22 hours ago










  • $begingroup$
    @JohnColeman Also, the OP might be interested in how the infinite descent method has been 'pushed' in number theory. And Euclid had no problem with it! en.wikipedia.org/wiki/Proof_by_infinite_descent#Number_theory
    $endgroup$
    – CopyPasteIt
    14 hours ago





















10












$begingroup$

The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



We are allowed to say a least $N$ exists because of the well-ordering principle.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
    $endgroup$
    – Don Thousand
    yesterday






  • 3




    $begingroup$
    @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
    $endgroup$
    – Robert Soupe
    yesterday






  • 1




    $begingroup$
    @RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
    $endgroup$
    – Nate Eldredge
    yesterday








  • 12




    $begingroup$
    @DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
    $endgroup$
    – Nate Eldredge
    yesterday






  • 4




    $begingroup$
    @NateEldredge: Indeed, the well-ordering principle (not the similarly-named well-ordering theorem) is equivalent to induction (and probably also to infinite descent, but I haven't worked through that one yet), so if you disallow WOP, then you are going to have a hard time proving a lot of things.
    $endgroup$
    – Kevin
    yesterday





















4












$begingroup$


I feel like this proof kind of presupposes the lemma.




Because it does.

It says so right in the first two sentences, which can be rephrased as:




Let $N$ be the smallest positive integer that cannot be written as a product of primes.




So yes, the proof assumes that all positive integers smaller than $N$ can be written as a product of primes.

This is OK, though, because it is trivially true for the smallest integers: 1, 2. The proof builds on that to infer that no such an $N$ exists where the lemma is not true.






share|cite|improve this answer








New contributor




walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$





















    3












    $begingroup$

    I can definitely understand how this can feel a little off.



    1) The lemma (as stated in the question) says all nonzero integers. Primes are integers and, by definition, cannot be products of primes. So, I think the lemma probably is actually more along the lines of: "all positive non-prime integers can be written as a product of primes".



    2) Also, the statement "since 𝑚,𝑛 are positive and smaller than 𝑁 they must each be a product of primes" doesn't really explain why they must be a product of primes. Since, 𝑁 is the smallest positive non-prime integer that cannot be written as a product of primes (by supposition of the lemma), then 𝑚,𝑛 are either prime themselves or a product of primes (as they are less than 𝑁 and 𝑁 is the smallest number that isn't a product of primes). Either way, they will provide the primes necessary to create 𝑁, making 𝑁 able to be constructed as a product of primes.



    Hopefully this helps to see why the proof by contradiction works.






    share|cite|improve this answer








    New contributor




    dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$













    • $begingroup$
      As far as your (1) is concerned, I think this is just a matter of "over-mathematical" style in the question. 35 is a product of primes. It is a product of the two primes 5 and 7. 37 is a product of primes. It is a product of the one primes 37. But you have raised the extra, interesting point: the statement is "every non-zero integer" but the proof assumes integers >1. Which rather implies that 1 is either not an integer or not non-zero!
      $endgroup$
      – Martin Kochanski
      yesterday












    • $begingroup$
      @MartinKochanski The standard way of dealing with $1$ is that the product of zero terms is $1$ by convention, so $1$ is the product of zero primes.
      $endgroup$
      – Especially Lime
      22 hours ago



















    3












    $begingroup$

    An integer $n$ is said to be a composite if it can be expressed as the product of two integers $a$ and $b$ with $a notin {-1,0,1}$ and $b notin {-1,0,1}$.



    An integers $p notin {-1,0,1}$ that is not a composite is called a prime number.



    Recall the method of infinite descent used in mathematical proofs.



    Suppose $m notin {-1,0,1}$ and it can't be expressed as a product of primes. If $m lt 0$ then it is certainly true that the positive number $-m$ can't be factored into primes. So the existence of $m$ allows us to assert that there are positive integers greater than $1$ that can't be factored into a product of prime numbers.



    So using infinite descent, we have a minimal $n > 1$ that can't be written as a product of primes. In particular, $n$ can't be a prime. But then it must be a composite, and we can write



    $quad n = st text{ with } s,t gt 1$



    Note: The composite factors $s$ and $t$ must both be positive or negative.

    If they are both negative, replace $s$ with $-s$ and $t$ with $-t$.



    But then $s lt n$ and so it can be written as a product of primes. Similarly, $t$ can be written as a product of primes. But then $n$ itself is a product of primes. But this is not possible by our choice of $n$. So the initial assumption of the existence of $m notin {-1,0,1}$ with no prime factorization leads to a contradiction.



    So every $n notin {-1,0,1}$ has a prime factorization.






    share|cite|improve this answer











    $endgroup$





















      3












      $begingroup$


      I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.




      No apology is necessary since your question is by no means silly. It is not at all surprising that you are puzzled by the cited exposition since it is incredibly sloppy. Kudos to you for reading it very carefully and noticing these problems.




      Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.




      Let's examine closely that initial section on primes and prime factorizations.



      On page $1$ begins a section titled "Unique Factorization in $Bbb Z$" where they briefly review divisibility of "natural numbers $1,2,3ldots"$ This leads to the following "definition" of a prime:




      Numbers that cannot be factored further are called primes. To be more precise, we say that a number $p$ is a prime if its only divisors are $1$ and $p.$




      This is imprecise. Is $1$ a prime by this definition? In the next paragraph we find




      The first prime numbers are $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,ldots$




      So $1$ is not prime. That agrees with modern conventions.



      On the next page they segue into factorization in the ring of integers $Bbb Z$ where they write




      If $p$ is a positive prime, $-p$ will also be a prime. We shall not consider $1$ or $-1$ as primes even though they fit the definition.




      This poses a few problems. They now claim that $1$ does fit the prior definition of a prime, but they didn't list it above (or explain why it was excluded). Further it implies that $ p = -2$ is a prime but it doesn't fit the above definition (it has divisors $,pm1, pm 2,,$ not only $1$ and $p$). They don't give any definition of a prime integer (vs. natural).



      Readers familiar with basic ring theory and factorization in integral domains will likely have no problem inferring what is intended (the notion of an irreducible or indecomposable element), but any careful reader lacking such background will likely be quite puzzled by these inconsistencies and gaps.



      As such, it comes as no surprise that the following proof employing these fuzzy notions may well prove troublesome for readers unfamiliar with the intended notions.




      Lemma $1.$ Every nonzero integer can be written as a product of primes.



      PROOF $ $ Assume that there is an integer that cannot be written as a product of
      primes. Let $N$ be the smallest positive integer with this property. Since $N$
      cannot itself be prime we must have $,N = mn,,$ where $1 < m,, n < N.,$ However, since $m$ and $n$ are positive and smaller than $N$ they must each be a
      product of primes. But then so is $N = mn.$ This is a contradiction.




      The proof has many problems. It doesn't properly handle the (implied) prime factorization of $pm1$ and they forgot to handle the possibility that the counterexample is negative (w.l.o.g. reducing to a positive counterexample).



      Considering all of the above problems, it is no wonder that you found this proof confusing.




      The proof can be given in a more positive way by using mathematical
      induction. It is enough to prove the result for all positive integers. $2$ is a
      prime. Suppose that $2 < N$ and that we have proved the result for all
      numbers $m$ such that $2 < m < N.$ We wish to show that $N$ is a product of
      primes. If $N$ is a prime, there is nothing to do. If $N$ is not a prime, then
      $N = mn,$ where $2 < m,, n < N.$ By induction both $m$ and $n$ are products of
      primes and thus so is $N.$




      Here they've reformulated the induction from negative form - an (infinite) descent on counterexamples (or a "minimal criminal") - into a positive ascent, i.e. into a complete (or strong) induction, and they give some hint about the reduction to the positive case, but still there is no handling of $pm1$. What is actually intended can be inferred from the next theorem they present.




      Theorem $1.$ For every nonzero integer $n$ there is a prime factorization



      $$ n, = (-1)^{e(n)} prod_p p^{a(p)}$$



      with the exponents uniquely determined by $n$. Here $e(n) = 0$ or $1$ depending on whether $n$ is positive or negative and where the product is over all positive primes. The exponents $a(p)$ are nonnegative integers and, of course, $a(p) = 0$ for all but finitely many primes.




      That explains how they handle the prime factorization of $pm1$ and the reduction to positive primes. With that in mind you should be able to fix the proof of the lemma.



      As above, often when there is puzzling exposition in textbooks it can be clarified by reading a bit further to help infer what was intended. But - of course - that is no excuse for sloppy exposition.






      share|cite|improve this answer











      $endgroup$









      • 1




        $begingroup$
        Prima facie, by examining the Q&A/comments here, and even before your answer, I knew that the book could be depended on one thing - that any reader would be forced to put in their own finishing touches to make the material 'crystallize '. . (+1) for providing a (partial) critical review of the book.
        $endgroup$
        – CopyPasteIt
        6 hours ago










      • $begingroup$
        @CopyPasteIt It is a popular and widely-respected textbook.
        $endgroup$
        – Bill Dubuque
        6 hours ago






      • 1




        $begingroup$
        Sure hope that knowing that prime numbers can be negative is used in later chapters. And that we all nod our heads and say 'what a modern and elegant approach'.
        $endgroup$
        – CopyPasteIt
        6 hours ago



















      1












      $begingroup$

      There is a property of the natural numbers called well-order. A set is well-ordered if every non-empty subset has a least element. So given any property $P$:




      1. The set of numbers for which $P(n)$ is false is either empty or has a least element.


      2. Suppose there is some number $n_0$ such that $P(n_0)$ is false. If $n_0$ is the least such number, then obviously $P(n_0-1)$ is true [1] (otherwise $n_0-1$ would be a number for which $P$ is false that is smaller than $n_0$, and so $n_0$ wouldn't be the smallest such number).


      3. Thus, if we can prove that there is no number $n_0$ such that $P(n_0-1)$ is true and $P(n_0)$ is false (i.e. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$", then we have shown that the set of numbers for which $P$ is false has no least element.


      4. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$" is equivalent to "$forall n_0: (neg P(n_0-1) lor P(n_0))$", which is in turn equivalent to "$forall n_0: (P(n_0-1) rightarrow P(n_0))$".


      5. Thus, if we can prove $forall n_0: (P(n_0-1) rightarrow P(n_0))$, then it follows that the set of numbers for which $P(n)$ is false does not have a least element. Since all non-empty sets of natural numbers have a least element, this set must be empty. That is, there are no numbers for which $P(n)$ is false, i.e. $P(n)$ is true for all $n$.



      [1] There is also the possibility that $n_0-1$ isn't a natural number, which happens when $n_0=0$. Dealing with this possibility requires proving that $P(0)$ is true separately, which is why induction proofs require a base case.



      So that's the concept behind induction proofs: if the proposition isn't true for all numbers, then there is a non-empty set of numbers for which it is false, which has to have a least element, which means that we have to go from "true" to "false" at some point. Inductive proofs thus look a bit like circular reasoning: you start assuming that the proposition is true, and use that to prove that the proposition is true. But what makes it non-fallacious is that you prove that the proposition is true for a later number by assuming that it's true for an earlier number.



      The proof that you cite is using the same basic principle as induction, namely the well-order of the natural numbers, but it is skipping the one-by-one sort of process that induction proofs usually use. Instead of saying "If $P(n_0)$ is false, then $P(n_0-1)$ being true leads to a contradiction", it's saying "If $P(n_0)$ is false, then $P(n)$ being true for $n<n_0$ leads to a contradiction". Like a standard induction proof, it superficially looks like circular reasoning, but isn't, because it's proving that the proposition is true for $N$ using the fact that it's true for smaller numbers.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });






        Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.










        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161147%2fproof-of-lemma-every-integer-can-be-written-as-a-product-of-primes%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        7 Answers
        7






        active

        oldest

        votes








        7 Answers
        7






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        17












        $begingroup$

        Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




        Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







        share|cite|improve this answer









        $endgroup$









        • 11




          $begingroup$
          This is equivalent, so how is it "so much clearer"? Personally, I find the original clearer.
          $endgroup$
          – John Coleman
          23 hours ago










        • $begingroup$
          +1 for “the direct proof by induction is so much clearer”. I’ve seen so many unnecessary proofs by induction.
          $endgroup$
          – Bob Krueger
          22 hours ago










        • $begingroup$
          @JohnColeman Also, the OP might be interested in how the infinite descent method has been 'pushed' in number theory. And Euclid had no problem with it! en.wikipedia.org/wiki/Proof_by_infinite_descent#Number_theory
          $endgroup$
          – CopyPasteIt
          14 hours ago


















        17












        $begingroup$

        Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




        Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







        share|cite|improve this answer









        $endgroup$









        • 11




          $begingroup$
          This is equivalent, so how is it "so much clearer"? Personally, I find the original clearer.
          $endgroup$
          – John Coleman
          23 hours ago










        • $begingroup$
          +1 for “the direct proof by induction is so much clearer”. I’ve seen so many unnecessary proofs by induction.
          $endgroup$
          – Bob Krueger
          22 hours ago










        • $begingroup$
          @JohnColeman Also, the OP might be interested in how the infinite descent method has been 'pushed' in number theory. And Euclid had no problem with it! en.wikipedia.org/wiki/Proof_by_infinite_descent#Number_theory
          $endgroup$
          – CopyPasteIt
          14 hours ago
















        17












        17








        17





        $begingroup$

        Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




        Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







        share|cite|improve this answer









        $endgroup$



        Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




        Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.








        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        lhflhf

        167k11172403




        167k11172403








        • 11




          $begingroup$
          This is equivalent, so how is it "so much clearer"? Personally, I find the original clearer.
          $endgroup$
          – John Coleman
          23 hours ago










        • $begingroup$
          +1 for “the direct proof by induction is so much clearer”. I’ve seen so many unnecessary proofs by induction.
          $endgroup$
          – Bob Krueger
          22 hours ago










        • $begingroup$
          @JohnColeman Also, the OP might be interested in how the infinite descent method has been 'pushed' in number theory. And Euclid had no problem with it! en.wikipedia.org/wiki/Proof_by_infinite_descent#Number_theory
          $endgroup$
          – CopyPasteIt
          14 hours ago
















        • 11




          $begingroup$
          This is equivalent, so how is it "so much clearer"? Personally, I find the original clearer.
          $endgroup$
          – John Coleman
          23 hours ago










        • $begingroup$
          +1 for “the direct proof by induction is so much clearer”. I’ve seen so many unnecessary proofs by induction.
          $endgroup$
          – Bob Krueger
          22 hours ago










        • $begingroup$
          @JohnColeman Also, the OP might be interested in how the infinite descent method has been 'pushed' in number theory. And Euclid had no problem with it! en.wikipedia.org/wiki/Proof_by_infinite_descent#Number_theory
          $endgroup$
          – CopyPasteIt
          14 hours ago










        11




        11




        $begingroup$
        This is equivalent, so how is it "so much clearer"? Personally, I find the original clearer.
        $endgroup$
        – John Coleman
        23 hours ago




        $begingroup$
        This is equivalent, so how is it "so much clearer"? Personally, I find the original clearer.
        $endgroup$
        – John Coleman
        23 hours ago












        $begingroup$
        +1 for “the direct proof by induction is so much clearer”. I’ve seen so many unnecessary proofs by induction.
        $endgroup$
        – Bob Krueger
        22 hours ago




        $begingroup$
        +1 for “the direct proof by induction is so much clearer”. I’ve seen so many unnecessary proofs by induction.
        $endgroup$
        – Bob Krueger
        22 hours ago












        $begingroup$
        @JohnColeman Also, the OP might be interested in how the infinite descent method has been 'pushed' in number theory. And Euclid had no problem with it! en.wikipedia.org/wiki/Proof_by_infinite_descent#Number_theory
        $endgroup$
        – CopyPasteIt
        14 hours ago






        $begingroup$
        @JohnColeman Also, the OP might be interested in how the infinite descent method has been 'pushed' in number theory. And Euclid had no problem with it! en.wikipedia.org/wiki/Proof_by_infinite_descent#Number_theory
        $endgroup$
        – CopyPasteIt
        14 hours ago













        10












        $begingroup$

        The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



        We are allowed to say a least $N$ exists because of the well-ordering principle.






        share|cite|improve this answer









        $endgroup$









        • 1




          $begingroup$
          I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
          $endgroup$
          – Don Thousand
          yesterday






        • 3




          $begingroup$
          @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
          $endgroup$
          – Robert Soupe
          yesterday






        • 1




          $begingroup$
          @RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
          $endgroup$
          – Nate Eldredge
          yesterday








        • 12




          $begingroup$
          @DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
          $endgroup$
          – Nate Eldredge
          yesterday






        • 4




          $begingroup$
          @NateEldredge: Indeed, the well-ordering principle (not the similarly-named well-ordering theorem) is equivalent to induction (and probably also to infinite descent, but I haven't worked through that one yet), so if you disallow WOP, then you are going to have a hard time proving a lot of things.
          $endgroup$
          – Kevin
          yesterday


















        10












        $begingroup$

        The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



        We are allowed to say a least $N$ exists because of the well-ordering principle.






        share|cite|improve this answer









        $endgroup$









        • 1




          $begingroup$
          I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
          $endgroup$
          – Don Thousand
          yesterday






        • 3




          $begingroup$
          @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
          $endgroup$
          – Robert Soupe
          yesterday






        • 1




          $begingroup$
          @RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
          $endgroup$
          – Nate Eldredge
          yesterday








        • 12




          $begingroup$
          @DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
          $endgroup$
          – Nate Eldredge
          yesterday






        • 4




          $begingroup$
          @NateEldredge: Indeed, the well-ordering principle (not the similarly-named well-ordering theorem) is equivalent to induction (and probably also to infinite descent, but I haven't worked through that one yet), so if you disallow WOP, then you are going to have a hard time proving a lot of things.
          $endgroup$
          – Kevin
          yesterday
















        10












        10








        10





        $begingroup$

        The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



        We are allowed to say a least $N$ exists because of the well-ordering principle.






        share|cite|improve this answer









        $endgroup$



        The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



        We are allowed to say a least $N$ exists because of the well-ordering principle.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        Edgar Jaramillo RodriguezEdgar Jaramillo Rodriguez

        1997




        1997








        • 1




          $begingroup$
          I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
          $endgroup$
          – Don Thousand
          yesterday






        • 3




          $begingroup$
          @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
          $endgroup$
          – Robert Soupe
          yesterday






        • 1




          $begingroup$
          @RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
          $endgroup$
          – Nate Eldredge
          yesterday








        • 12




          $begingroup$
          @DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
          $endgroup$
          – Nate Eldredge
          yesterday






        • 4




          $begingroup$
          @NateEldredge: Indeed, the well-ordering principle (not the similarly-named well-ordering theorem) is equivalent to induction (and probably also to infinite descent, but I haven't worked through that one yet), so if you disallow WOP, then you are going to have a hard time proving a lot of things.
          $endgroup$
          – Kevin
          yesterday
















        • 1




          $begingroup$
          I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
          $endgroup$
          – Don Thousand
          yesterday






        • 3




          $begingroup$
          @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
          $endgroup$
          – Robert Soupe
          yesterday






        • 1




          $begingroup$
          @RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
          $endgroup$
          – Nate Eldredge
          yesterday








        • 12




          $begingroup$
          @DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
          $endgroup$
          – Nate Eldredge
          yesterday






        • 4




          $begingroup$
          @NateEldredge: Indeed, the well-ordering principle (not the similarly-named well-ordering theorem) is equivalent to induction (and probably also to infinite descent, but I haven't worked through that one yet), so if you disallow WOP, then you are going to have a hard time proving a lot of things.
          $endgroup$
          – Kevin
          yesterday










        1




        1




        $begingroup$
        I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
        $endgroup$
        – Don Thousand
        yesterday




        $begingroup$
        I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
        $endgroup$
        – Don Thousand
        yesterday




        3




        3




        $begingroup$
        @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
        $endgroup$
        – Robert Soupe
        yesterday




        $begingroup$
        @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
        $endgroup$
        – Robert Soupe
        yesterday




        1




        1




        $begingroup$
        @RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
        $endgroup$
        – Nate Eldredge
        yesterday






        $begingroup$
        @RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
        $endgroup$
        – Nate Eldredge
        yesterday






        12




        12




        $begingroup$
        @DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
        $endgroup$
        – Nate Eldredge
        yesterday




        $begingroup$
        @DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
        $endgroup$
        – Nate Eldredge
        yesterday




        4




        4




        $begingroup$
        @NateEldredge: Indeed, the well-ordering principle (not the similarly-named well-ordering theorem) is equivalent to induction (and probably also to infinite descent, but I haven't worked through that one yet), so if you disallow WOP, then you are going to have a hard time proving a lot of things.
        $endgroup$
        – Kevin
        yesterday






        $begingroup$
        @NateEldredge: Indeed, the well-ordering principle (not the similarly-named well-ordering theorem) is equivalent to induction (and probably also to infinite descent, but I haven't worked through that one yet), so if you disallow WOP, then you are going to have a hard time proving a lot of things.
        $endgroup$
        – Kevin
        yesterday













        4












        $begingroup$


        I feel like this proof kind of presupposes the lemma.




        Because it does.

        It says so right in the first two sentences, which can be rephrased as:




        Let $N$ be the smallest positive integer that cannot be written as a product of primes.




        So yes, the proof assumes that all positive integers smaller than $N$ can be written as a product of primes.

        This is OK, though, because it is trivially true for the smallest integers: 1, 2. The proof builds on that to infer that no such an $N$ exists where the lemma is not true.






        share|cite|improve this answer








        New contributor




        walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$


















          4












          $begingroup$


          I feel like this proof kind of presupposes the lemma.




          Because it does.

          It says so right in the first two sentences, which can be rephrased as:




          Let $N$ be the smallest positive integer that cannot be written as a product of primes.




          So yes, the proof assumes that all positive integers smaller than $N$ can be written as a product of primes.

          This is OK, though, because it is trivially true for the smallest integers: 1, 2. The proof builds on that to infer that no such an $N$ exists where the lemma is not true.






          share|cite|improve this answer








          New contributor




          walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$
















            4












            4








            4





            $begingroup$


            I feel like this proof kind of presupposes the lemma.




            Because it does.

            It says so right in the first two sentences, which can be rephrased as:




            Let $N$ be the smallest positive integer that cannot be written as a product of primes.




            So yes, the proof assumes that all positive integers smaller than $N$ can be written as a product of primes.

            This is OK, though, because it is trivially true for the smallest integers: 1, 2. The proof builds on that to infer that no such an $N$ exists where the lemma is not true.






            share|cite|improve this answer








            New contributor




            walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$




            I feel like this proof kind of presupposes the lemma.




            Because it does.

            It says so right in the first two sentences, which can be rephrased as:




            Let $N$ be the smallest positive integer that cannot be written as a product of primes.




            So yes, the proof assumes that all positive integers smaller than $N$ can be written as a product of primes.

            This is OK, though, because it is trivially true for the smallest integers: 1, 2. The proof builds on that to infer that no such an $N$ exists where the lemma is not true.







            share|cite|improve this answer








            New contributor




            walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|cite|improve this answer



            share|cite|improve this answer






            New contributor




            walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered 19 hours ago









            walenwalen

            1493




            1493




            New contributor




            walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            walen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.























                3












                $begingroup$

                I can definitely understand how this can feel a little off.



                1) The lemma (as stated in the question) says all nonzero integers. Primes are integers and, by definition, cannot be products of primes. So, I think the lemma probably is actually more along the lines of: "all positive non-prime integers can be written as a product of primes".



                2) Also, the statement "since 𝑚,𝑛 are positive and smaller than 𝑁 they must each be a product of primes" doesn't really explain why they must be a product of primes. Since, 𝑁 is the smallest positive non-prime integer that cannot be written as a product of primes (by supposition of the lemma), then 𝑚,𝑛 are either prime themselves or a product of primes (as they are less than 𝑁 and 𝑁 is the smallest number that isn't a product of primes). Either way, they will provide the primes necessary to create 𝑁, making 𝑁 able to be constructed as a product of primes.



                Hopefully this helps to see why the proof by contradiction works.






                share|cite|improve this answer








                New contributor




                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$













                • $begingroup$
                  As far as your (1) is concerned, I think this is just a matter of "over-mathematical" style in the question. 35 is a product of primes. It is a product of the two primes 5 and 7. 37 is a product of primes. It is a product of the one primes 37. But you have raised the extra, interesting point: the statement is "every non-zero integer" but the proof assumes integers >1. Which rather implies that 1 is either not an integer or not non-zero!
                  $endgroup$
                  – Martin Kochanski
                  yesterday












                • $begingroup$
                  @MartinKochanski The standard way of dealing with $1$ is that the product of zero terms is $1$ by convention, so $1$ is the product of zero primes.
                  $endgroup$
                  – Especially Lime
                  22 hours ago
















                3












                $begingroup$

                I can definitely understand how this can feel a little off.



                1) The lemma (as stated in the question) says all nonzero integers. Primes are integers and, by definition, cannot be products of primes. So, I think the lemma probably is actually more along the lines of: "all positive non-prime integers can be written as a product of primes".



                2) Also, the statement "since 𝑚,𝑛 are positive and smaller than 𝑁 they must each be a product of primes" doesn't really explain why they must be a product of primes. Since, 𝑁 is the smallest positive non-prime integer that cannot be written as a product of primes (by supposition of the lemma), then 𝑚,𝑛 are either prime themselves or a product of primes (as they are less than 𝑁 and 𝑁 is the smallest number that isn't a product of primes). Either way, they will provide the primes necessary to create 𝑁, making 𝑁 able to be constructed as a product of primes.



                Hopefully this helps to see why the proof by contradiction works.






                share|cite|improve this answer








                New contributor




                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$













                • $begingroup$
                  As far as your (1) is concerned, I think this is just a matter of "over-mathematical" style in the question. 35 is a product of primes. It is a product of the two primes 5 and 7. 37 is a product of primes. It is a product of the one primes 37. But you have raised the extra, interesting point: the statement is "every non-zero integer" but the proof assumes integers >1. Which rather implies that 1 is either not an integer or not non-zero!
                  $endgroup$
                  – Martin Kochanski
                  yesterday












                • $begingroup$
                  @MartinKochanski The standard way of dealing with $1$ is that the product of zero terms is $1$ by convention, so $1$ is the product of zero primes.
                  $endgroup$
                  – Especially Lime
                  22 hours ago














                3












                3








                3





                $begingroup$

                I can definitely understand how this can feel a little off.



                1) The lemma (as stated in the question) says all nonzero integers. Primes are integers and, by definition, cannot be products of primes. So, I think the lemma probably is actually more along the lines of: "all positive non-prime integers can be written as a product of primes".



                2) Also, the statement "since 𝑚,𝑛 are positive and smaller than 𝑁 they must each be a product of primes" doesn't really explain why they must be a product of primes. Since, 𝑁 is the smallest positive non-prime integer that cannot be written as a product of primes (by supposition of the lemma), then 𝑚,𝑛 are either prime themselves or a product of primes (as they are less than 𝑁 and 𝑁 is the smallest number that isn't a product of primes). Either way, they will provide the primes necessary to create 𝑁, making 𝑁 able to be constructed as a product of primes.



                Hopefully this helps to see why the proof by contradiction works.






                share|cite|improve this answer








                New contributor




                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$



                I can definitely understand how this can feel a little off.



                1) The lemma (as stated in the question) says all nonzero integers. Primes are integers and, by definition, cannot be products of primes. So, I think the lemma probably is actually more along the lines of: "all positive non-prime integers can be written as a product of primes".



                2) Also, the statement "since 𝑚,𝑛 are positive and smaller than 𝑁 they must each be a product of primes" doesn't really explain why they must be a product of primes. Since, 𝑁 is the smallest positive non-prime integer that cannot be written as a product of primes (by supposition of the lemma), then 𝑚,𝑛 are either prime themselves or a product of primes (as they are less than 𝑁 and 𝑁 is the smallest number that isn't a product of primes). Either way, they will provide the primes necessary to create 𝑁, making 𝑁 able to be constructed as a product of primes.



                Hopefully this helps to see why the proof by contradiction works.







                share|cite|improve this answer








                New contributor




                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                share|cite|improve this answer



                share|cite|improve this answer






                New contributor




                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                answered yesterday









                dudemandudeman

                1393




                1393




                New contributor




                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.





                New contributor





                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                dudeman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.












                • $begingroup$
                  As far as your (1) is concerned, I think this is just a matter of "over-mathematical" style in the question. 35 is a product of primes. It is a product of the two primes 5 and 7. 37 is a product of primes. It is a product of the one primes 37. But you have raised the extra, interesting point: the statement is "every non-zero integer" but the proof assumes integers >1. Which rather implies that 1 is either not an integer or not non-zero!
                  $endgroup$
                  – Martin Kochanski
                  yesterday












                • $begingroup$
                  @MartinKochanski The standard way of dealing with $1$ is that the product of zero terms is $1$ by convention, so $1$ is the product of zero primes.
                  $endgroup$
                  – Especially Lime
                  22 hours ago


















                • $begingroup$
                  As far as your (1) is concerned, I think this is just a matter of "over-mathematical" style in the question. 35 is a product of primes. It is a product of the two primes 5 and 7. 37 is a product of primes. It is a product of the one primes 37. But you have raised the extra, interesting point: the statement is "every non-zero integer" but the proof assumes integers >1. Which rather implies that 1 is either not an integer or not non-zero!
                  $endgroup$
                  – Martin Kochanski
                  yesterday












                • $begingroup$
                  @MartinKochanski The standard way of dealing with $1$ is that the product of zero terms is $1$ by convention, so $1$ is the product of zero primes.
                  $endgroup$
                  – Especially Lime
                  22 hours ago
















                $begingroup$
                As far as your (1) is concerned, I think this is just a matter of "over-mathematical" style in the question. 35 is a product of primes. It is a product of the two primes 5 and 7. 37 is a product of primes. It is a product of the one primes 37. But you have raised the extra, interesting point: the statement is "every non-zero integer" but the proof assumes integers >1. Which rather implies that 1 is either not an integer or not non-zero!
                $endgroup$
                – Martin Kochanski
                yesterday






                $begingroup$
                As far as your (1) is concerned, I think this is just a matter of "over-mathematical" style in the question. 35 is a product of primes. It is a product of the two primes 5 and 7. 37 is a product of primes. It is a product of the one primes 37. But you have raised the extra, interesting point: the statement is "every non-zero integer" but the proof assumes integers >1. Which rather implies that 1 is either not an integer or not non-zero!
                $endgroup$
                – Martin Kochanski
                yesterday














                $begingroup$
                @MartinKochanski The standard way of dealing with $1$ is that the product of zero terms is $1$ by convention, so $1$ is the product of zero primes.
                $endgroup$
                – Especially Lime
                22 hours ago




                $begingroup$
                @MartinKochanski The standard way of dealing with $1$ is that the product of zero terms is $1$ by convention, so $1$ is the product of zero primes.
                $endgroup$
                – Especially Lime
                22 hours ago











                3












                $begingroup$

                An integer $n$ is said to be a composite if it can be expressed as the product of two integers $a$ and $b$ with $a notin {-1,0,1}$ and $b notin {-1,0,1}$.



                An integers $p notin {-1,0,1}$ that is not a composite is called a prime number.



                Recall the method of infinite descent used in mathematical proofs.



                Suppose $m notin {-1,0,1}$ and it can't be expressed as a product of primes. If $m lt 0$ then it is certainly true that the positive number $-m$ can't be factored into primes. So the existence of $m$ allows us to assert that there are positive integers greater than $1$ that can't be factored into a product of prime numbers.



                So using infinite descent, we have a minimal $n > 1$ that can't be written as a product of primes. In particular, $n$ can't be a prime. But then it must be a composite, and we can write



                $quad n = st text{ with } s,t gt 1$



                Note: The composite factors $s$ and $t$ must both be positive or negative.

                If they are both negative, replace $s$ with $-s$ and $t$ with $-t$.



                But then $s lt n$ and so it can be written as a product of primes. Similarly, $t$ can be written as a product of primes. But then $n$ itself is a product of primes. But this is not possible by our choice of $n$. So the initial assumption of the existence of $m notin {-1,0,1}$ with no prime factorization leads to a contradiction.



                So every $n notin {-1,0,1}$ has a prime factorization.






                share|cite|improve this answer











                $endgroup$


















                  3












                  $begingroup$

                  An integer $n$ is said to be a composite if it can be expressed as the product of two integers $a$ and $b$ with $a notin {-1,0,1}$ and $b notin {-1,0,1}$.



                  An integers $p notin {-1,0,1}$ that is not a composite is called a prime number.



                  Recall the method of infinite descent used in mathematical proofs.



                  Suppose $m notin {-1,0,1}$ and it can't be expressed as a product of primes. If $m lt 0$ then it is certainly true that the positive number $-m$ can't be factored into primes. So the existence of $m$ allows us to assert that there are positive integers greater than $1$ that can't be factored into a product of prime numbers.



                  So using infinite descent, we have a minimal $n > 1$ that can't be written as a product of primes. In particular, $n$ can't be a prime. But then it must be a composite, and we can write



                  $quad n = st text{ with } s,t gt 1$



                  Note: The composite factors $s$ and $t$ must both be positive or negative.

                  If they are both negative, replace $s$ with $-s$ and $t$ with $-t$.



                  But then $s lt n$ and so it can be written as a product of primes. Similarly, $t$ can be written as a product of primes. But then $n$ itself is a product of primes. But this is not possible by our choice of $n$. So the initial assumption of the existence of $m notin {-1,0,1}$ with no prime factorization leads to a contradiction.



                  So every $n notin {-1,0,1}$ has a prime factorization.






                  share|cite|improve this answer











                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    An integer $n$ is said to be a composite if it can be expressed as the product of two integers $a$ and $b$ with $a notin {-1,0,1}$ and $b notin {-1,0,1}$.



                    An integers $p notin {-1,0,1}$ that is not a composite is called a prime number.



                    Recall the method of infinite descent used in mathematical proofs.



                    Suppose $m notin {-1,0,1}$ and it can't be expressed as a product of primes. If $m lt 0$ then it is certainly true that the positive number $-m$ can't be factored into primes. So the existence of $m$ allows us to assert that there are positive integers greater than $1$ that can't be factored into a product of prime numbers.



                    So using infinite descent, we have a minimal $n > 1$ that can't be written as a product of primes. In particular, $n$ can't be a prime. But then it must be a composite, and we can write



                    $quad n = st text{ with } s,t gt 1$



                    Note: The composite factors $s$ and $t$ must both be positive or negative.

                    If they are both negative, replace $s$ with $-s$ and $t$ with $-t$.



                    But then $s lt n$ and so it can be written as a product of primes. Similarly, $t$ can be written as a product of primes. But then $n$ itself is a product of primes. But this is not possible by our choice of $n$. So the initial assumption of the existence of $m notin {-1,0,1}$ with no prime factorization leads to a contradiction.



                    So every $n notin {-1,0,1}$ has a prime factorization.






                    share|cite|improve this answer











                    $endgroup$



                    An integer $n$ is said to be a composite if it can be expressed as the product of two integers $a$ and $b$ with $a notin {-1,0,1}$ and $b notin {-1,0,1}$.



                    An integers $p notin {-1,0,1}$ that is not a composite is called a prime number.



                    Recall the method of infinite descent used in mathematical proofs.



                    Suppose $m notin {-1,0,1}$ and it can't be expressed as a product of primes. If $m lt 0$ then it is certainly true that the positive number $-m$ can't be factored into primes. So the existence of $m$ allows us to assert that there are positive integers greater than $1$ that can't be factored into a product of prime numbers.



                    So using infinite descent, we have a minimal $n > 1$ that can't be written as a product of primes. In particular, $n$ can't be a prime. But then it must be a composite, and we can write



                    $quad n = st text{ with } s,t gt 1$



                    Note: The composite factors $s$ and $t$ must both be positive or negative.

                    If they are both negative, replace $s$ with $-s$ and $t$ with $-t$.



                    But then $s lt n$ and so it can be written as a product of primes. Similarly, $t$ can be written as a product of primes. But then $n$ itself is a product of primes. But this is not possible by our choice of $n$. So the initial assumption of the existence of $m notin {-1,0,1}$ with no prime factorization leads to a contradiction.



                    So every $n notin {-1,0,1}$ has a prime factorization.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 17 hours ago

























                    answered 18 hours ago









                    CopyPasteItCopyPasteIt

                    4,2631728




                    4,2631728























                        3












                        $begingroup$


                        I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.




                        No apology is necessary since your question is by no means silly. It is not at all surprising that you are puzzled by the cited exposition since it is incredibly sloppy. Kudos to you for reading it very carefully and noticing these problems.




                        Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.




                        Let's examine closely that initial section on primes and prime factorizations.



                        On page $1$ begins a section titled "Unique Factorization in $Bbb Z$" where they briefly review divisibility of "natural numbers $1,2,3ldots"$ This leads to the following "definition" of a prime:




                        Numbers that cannot be factored further are called primes. To be more precise, we say that a number $p$ is a prime if its only divisors are $1$ and $p.$




                        This is imprecise. Is $1$ a prime by this definition? In the next paragraph we find




                        The first prime numbers are $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,ldots$




                        So $1$ is not prime. That agrees with modern conventions.



                        On the next page they segue into factorization in the ring of integers $Bbb Z$ where they write




                        If $p$ is a positive prime, $-p$ will also be a prime. We shall not consider $1$ or $-1$ as primes even though they fit the definition.




                        This poses a few problems. They now claim that $1$ does fit the prior definition of a prime, but they didn't list it above (or explain why it was excluded). Further it implies that $ p = -2$ is a prime but it doesn't fit the above definition (it has divisors $,pm1, pm 2,,$ not only $1$ and $p$). They don't give any definition of a prime integer (vs. natural).



                        Readers familiar with basic ring theory and factorization in integral domains will likely have no problem inferring what is intended (the notion of an irreducible or indecomposable element), but any careful reader lacking such background will likely be quite puzzled by these inconsistencies and gaps.



                        As such, it comes as no surprise that the following proof employing these fuzzy notions may well prove troublesome for readers unfamiliar with the intended notions.




                        Lemma $1.$ Every nonzero integer can be written as a product of primes.



                        PROOF $ $ Assume that there is an integer that cannot be written as a product of
                        primes. Let $N$ be the smallest positive integer with this property. Since $N$
                        cannot itself be prime we must have $,N = mn,,$ where $1 < m,, n < N.,$ However, since $m$ and $n$ are positive and smaller than $N$ they must each be a
                        product of primes. But then so is $N = mn.$ This is a contradiction.




                        The proof has many problems. It doesn't properly handle the (implied) prime factorization of $pm1$ and they forgot to handle the possibility that the counterexample is negative (w.l.o.g. reducing to a positive counterexample).



                        Considering all of the above problems, it is no wonder that you found this proof confusing.




                        The proof can be given in a more positive way by using mathematical
                        induction. It is enough to prove the result for all positive integers. $2$ is a
                        prime. Suppose that $2 < N$ and that we have proved the result for all
                        numbers $m$ such that $2 < m < N.$ We wish to show that $N$ is a product of
                        primes. If $N$ is a prime, there is nothing to do. If $N$ is not a prime, then
                        $N = mn,$ where $2 < m,, n < N.$ By induction both $m$ and $n$ are products of
                        primes and thus so is $N.$




                        Here they've reformulated the induction from negative form - an (infinite) descent on counterexamples (or a "minimal criminal") - into a positive ascent, i.e. into a complete (or strong) induction, and they give some hint about the reduction to the positive case, but still there is no handling of $pm1$. What is actually intended can be inferred from the next theorem they present.




                        Theorem $1.$ For every nonzero integer $n$ there is a prime factorization



                        $$ n, = (-1)^{e(n)} prod_p p^{a(p)}$$



                        with the exponents uniquely determined by $n$. Here $e(n) = 0$ or $1$ depending on whether $n$ is positive or negative and where the product is over all positive primes. The exponents $a(p)$ are nonnegative integers and, of course, $a(p) = 0$ for all but finitely many primes.




                        That explains how they handle the prime factorization of $pm1$ and the reduction to positive primes. With that in mind you should be able to fix the proof of the lemma.



                        As above, often when there is puzzling exposition in textbooks it can be clarified by reading a bit further to help infer what was intended. But - of course - that is no excuse for sloppy exposition.






                        share|cite|improve this answer











                        $endgroup$









                        • 1




                          $begingroup$
                          Prima facie, by examining the Q&A/comments here, and even before your answer, I knew that the book could be depended on one thing - that any reader would be forced to put in their own finishing touches to make the material 'crystallize '. . (+1) for providing a (partial) critical review of the book.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago










                        • $begingroup$
                          @CopyPasteIt It is a popular and widely-respected textbook.
                          $endgroup$
                          – Bill Dubuque
                          6 hours ago






                        • 1




                          $begingroup$
                          Sure hope that knowing that prime numbers can be negative is used in later chapters. And that we all nod our heads and say 'what a modern and elegant approach'.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago
















                        3












                        $begingroup$


                        I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.




                        No apology is necessary since your question is by no means silly. It is not at all surprising that you are puzzled by the cited exposition since it is incredibly sloppy. Kudos to you for reading it very carefully and noticing these problems.




                        Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.




                        Let's examine closely that initial section on primes and prime factorizations.



                        On page $1$ begins a section titled "Unique Factorization in $Bbb Z$" where they briefly review divisibility of "natural numbers $1,2,3ldots"$ This leads to the following "definition" of a prime:




                        Numbers that cannot be factored further are called primes. To be more precise, we say that a number $p$ is a prime if its only divisors are $1$ and $p.$




                        This is imprecise. Is $1$ a prime by this definition? In the next paragraph we find




                        The first prime numbers are $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,ldots$




                        So $1$ is not prime. That agrees with modern conventions.



                        On the next page they segue into factorization in the ring of integers $Bbb Z$ where they write




                        If $p$ is a positive prime, $-p$ will also be a prime. We shall not consider $1$ or $-1$ as primes even though they fit the definition.




                        This poses a few problems. They now claim that $1$ does fit the prior definition of a prime, but they didn't list it above (or explain why it was excluded). Further it implies that $ p = -2$ is a prime but it doesn't fit the above definition (it has divisors $,pm1, pm 2,,$ not only $1$ and $p$). They don't give any definition of a prime integer (vs. natural).



                        Readers familiar with basic ring theory and factorization in integral domains will likely have no problem inferring what is intended (the notion of an irreducible or indecomposable element), but any careful reader lacking such background will likely be quite puzzled by these inconsistencies and gaps.



                        As such, it comes as no surprise that the following proof employing these fuzzy notions may well prove troublesome for readers unfamiliar with the intended notions.




                        Lemma $1.$ Every nonzero integer can be written as a product of primes.



                        PROOF $ $ Assume that there is an integer that cannot be written as a product of
                        primes. Let $N$ be the smallest positive integer with this property. Since $N$
                        cannot itself be prime we must have $,N = mn,,$ where $1 < m,, n < N.,$ However, since $m$ and $n$ are positive and smaller than $N$ they must each be a
                        product of primes. But then so is $N = mn.$ This is a contradiction.




                        The proof has many problems. It doesn't properly handle the (implied) prime factorization of $pm1$ and they forgot to handle the possibility that the counterexample is negative (w.l.o.g. reducing to a positive counterexample).



                        Considering all of the above problems, it is no wonder that you found this proof confusing.




                        The proof can be given in a more positive way by using mathematical
                        induction. It is enough to prove the result for all positive integers. $2$ is a
                        prime. Suppose that $2 < N$ and that we have proved the result for all
                        numbers $m$ such that $2 < m < N.$ We wish to show that $N$ is a product of
                        primes. If $N$ is a prime, there is nothing to do. If $N$ is not a prime, then
                        $N = mn,$ where $2 < m,, n < N.$ By induction both $m$ and $n$ are products of
                        primes and thus so is $N.$




                        Here they've reformulated the induction from negative form - an (infinite) descent on counterexamples (or a "minimal criminal") - into a positive ascent, i.e. into a complete (or strong) induction, and they give some hint about the reduction to the positive case, but still there is no handling of $pm1$. What is actually intended can be inferred from the next theorem they present.




                        Theorem $1.$ For every nonzero integer $n$ there is a prime factorization



                        $$ n, = (-1)^{e(n)} prod_p p^{a(p)}$$



                        with the exponents uniquely determined by $n$. Here $e(n) = 0$ or $1$ depending on whether $n$ is positive or negative and where the product is over all positive primes. The exponents $a(p)$ are nonnegative integers and, of course, $a(p) = 0$ for all but finitely many primes.




                        That explains how they handle the prime factorization of $pm1$ and the reduction to positive primes. With that in mind you should be able to fix the proof of the lemma.



                        As above, often when there is puzzling exposition in textbooks it can be clarified by reading a bit further to help infer what was intended. But - of course - that is no excuse for sloppy exposition.






                        share|cite|improve this answer











                        $endgroup$









                        • 1




                          $begingroup$
                          Prima facie, by examining the Q&A/comments here, and even before your answer, I knew that the book could be depended on one thing - that any reader would be forced to put in their own finishing touches to make the material 'crystallize '. . (+1) for providing a (partial) critical review of the book.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago










                        • $begingroup$
                          @CopyPasteIt It is a popular and widely-respected textbook.
                          $endgroup$
                          – Bill Dubuque
                          6 hours ago






                        • 1




                          $begingroup$
                          Sure hope that knowing that prime numbers can be negative is used in later chapters. And that we all nod our heads and say 'what a modern and elegant approach'.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago














                        3












                        3








                        3





                        $begingroup$


                        I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.




                        No apology is necessary since your question is by no means silly. It is not at all surprising that you are puzzled by the cited exposition since it is incredibly sloppy. Kudos to you for reading it very carefully and noticing these problems.




                        Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.




                        Let's examine closely that initial section on primes and prime factorizations.



                        On page $1$ begins a section titled "Unique Factorization in $Bbb Z$" where they briefly review divisibility of "natural numbers $1,2,3ldots"$ This leads to the following "definition" of a prime:




                        Numbers that cannot be factored further are called primes. To be more precise, we say that a number $p$ is a prime if its only divisors are $1$ and $p.$




                        This is imprecise. Is $1$ a prime by this definition? In the next paragraph we find




                        The first prime numbers are $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,ldots$




                        So $1$ is not prime. That agrees with modern conventions.



                        On the next page they segue into factorization in the ring of integers $Bbb Z$ where they write




                        If $p$ is a positive prime, $-p$ will also be a prime. We shall not consider $1$ or $-1$ as primes even though they fit the definition.




                        This poses a few problems. They now claim that $1$ does fit the prior definition of a prime, but they didn't list it above (or explain why it was excluded). Further it implies that $ p = -2$ is a prime but it doesn't fit the above definition (it has divisors $,pm1, pm 2,,$ not only $1$ and $p$). They don't give any definition of a prime integer (vs. natural).



                        Readers familiar with basic ring theory and factorization in integral domains will likely have no problem inferring what is intended (the notion of an irreducible or indecomposable element), but any careful reader lacking such background will likely be quite puzzled by these inconsistencies and gaps.



                        As such, it comes as no surprise that the following proof employing these fuzzy notions may well prove troublesome for readers unfamiliar with the intended notions.




                        Lemma $1.$ Every nonzero integer can be written as a product of primes.



                        PROOF $ $ Assume that there is an integer that cannot be written as a product of
                        primes. Let $N$ be the smallest positive integer with this property. Since $N$
                        cannot itself be prime we must have $,N = mn,,$ where $1 < m,, n < N.,$ However, since $m$ and $n$ are positive and smaller than $N$ they must each be a
                        product of primes. But then so is $N = mn.$ This is a contradiction.




                        The proof has many problems. It doesn't properly handle the (implied) prime factorization of $pm1$ and they forgot to handle the possibility that the counterexample is negative (w.l.o.g. reducing to a positive counterexample).



                        Considering all of the above problems, it is no wonder that you found this proof confusing.




                        The proof can be given in a more positive way by using mathematical
                        induction. It is enough to prove the result for all positive integers. $2$ is a
                        prime. Suppose that $2 < N$ and that we have proved the result for all
                        numbers $m$ such that $2 < m < N.$ We wish to show that $N$ is a product of
                        primes. If $N$ is a prime, there is nothing to do. If $N$ is not a prime, then
                        $N = mn,$ where $2 < m,, n < N.$ By induction both $m$ and $n$ are products of
                        primes and thus so is $N.$




                        Here they've reformulated the induction from negative form - an (infinite) descent on counterexamples (or a "minimal criminal") - into a positive ascent, i.e. into a complete (or strong) induction, and they give some hint about the reduction to the positive case, but still there is no handling of $pm1$. What is actually intended can be inferred from the next theorem they present.




                        Theorem $1.$ For every nonzero integer $n$ there is a prime factorization



                        $$ n, = (-1)^{e(n)} prod_p p^{a(p)}$$



                        with the exponents uniquely determined by $n$. Here $e(n) = 0$ or $1$ depending on whether $n$ is positive or negative and where the product is over all positive primes. The exponents $a(p)$ are nonnegative integers and, of course, $a(p) = 0$ for all but finitely many primes.




                        That explains how they handle the prime factorization of $pm1$ and the reduction to positive primes. With that in mind you should be able to fix the proof of the lemma.



                        As above, often when there is puzzling exposition in textbooks it can be clarified by reading a bit further to help infer what was intended. But - of course - that is no excuse for sloppy exposition.






                        share|cite|improve this answer











                        $endgroup$




                        I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.




                        No apology is necessary since your question is by no means silly. It is not at all surprising that you are puzzled by the cited exposition since it is incredibly sloppy. Kudos to you for reading it very carefully and noticing these problems.




                        Edit: I'd like to add that this textbook states that if $p$ is a prime number, then so is $-p$. That's where my confusion stems from. The textbook is A Modern Introduction to Classical Number Theory by Ireland and Rosen.




                        Let's examine closely that initial section on primes and prime factorizations.



                        On page $1$ begins a section titled "Unique Factorization in $Bbb Z$" where they briefly review divisibility of "natural numbers $1,2,3ldots"$ This leads to the following "definition" of a prime:




                        Numbers that cannot be factored further are called primes. To be more precise, we say that a number $p$ is a prime if its only divisors are $1$ and $p.$




                        This is imprecise. Is $1$ a prime by this definition? In the next paragraph we find




                        The first prime numbers are $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,ldots$




                        So $1$ is not prime. That agrees with modern conventions.



                        On the next page they segue into factorization in the ring of integers $Bbb Z$ where they write




                        If $p$ is a positive prime, $-p$ will also be a prime. We shall not consider $1$ or $-1$ as primes even though they fit the definition.




                        This poses a few problems. They now claim that $1$ does fit the prior definition of a prime, but they didn't list it above (or explain why it was excluded). Further it implies that $ p = -2$ is a prime but it doesn't fit the above definition (it has divisors $,pm1, pm 2,,$ not only $1$ and $p$). They don't give any definition of a prime integer (vs. natural).



                        Readers familiar with basic ring theory and factorization in integral domains will likely have no problem inferring what is intended (the notion of an irreducible or indecomposable element), but any careful reader lacking such background will likely be quite puzzled by these inconsistencies and gaps.



                        As such, it comes as no surprise that the following proof employing these fuzzy notions may well prove troublesome for readers unfamiliar with the intended notions.




                        Lemma $1.$ Every nonzero integer can be written as a product of primes.



                        PROOF $ $ Assume that there is an integer that cannot be written as a product of
                        primes. Let $N$ be the smallest positive integer with this property. Since $N$
                        cannot itself be prime we must have $,N = mn,,$ where $1 < m,, n < N.,$ However, since $m$ and $n$ are positive and smaller than $N$ they must each be a
                        product of primes. But then so is $N = mn.$ This is a contradiction.




                        The proof has many problems. It doesn't properly handle the (implied) prime factorization of $pm1$ and they forgot to handle the possibility that the counterexample is negative (w.l.o.g. reducing to a positive counterexample).



                        Considering all of the above problems, it is no wonder that you found this proof confusing.




                        The proof can be given in a more positive way by using mathematical
                        induction. It is enough to prove the result for all positive integers. $2$ is a
                        prime. Suppose that $2 < N$ and that we have proved the result for all
                        numbers $m$ such that $2 < m < N.$ We wish to show that $N$ is a product of
                        primes. If $N$ is a prime, there is nothing to do. If $N$ is not a prime, then
                        $N = mn,$ where $2 < m,, n < N.$ By induction both $m$ and $n$ are products of
                        primes and thus so is $N.$




                        Here they've reformulated the induction from negative form - an (infinite) descent on counterexamples (or a "minimal criminal") - into a positive ascent, i.e. into a complete (or strong) induction, and they give some hint about the reduction to the positive case, but still there is no handling of $pm1$. What is actually intended can be inferred from the next theorem they present.




                        Theorem $1.$ For every nonzero integer $n$ there is a prime factorization



                        $$ n, = (-1)^{e(n)} prod_p p^{a(p)}$$



                        with the exponents uniquely determined by $n$. Here $e(n) = 0$ or $1$ depending on whether $n$ is positive or negative and where the product is over all positive primes. The exponents $a(p)$ are nonnegative integers and, of course, $a(p) = 0$ for all but finitely many primes.




                        That explains how they handle the prime factorization of $pm1$ and the reduction to positive primes. With that in mind you should be able to fix the proof of the lemma.



                        As above, often when there is puzzling exposition in textbooks it can be clarified by reading a bit further to help infer what was intended. But - of course - that is no excuse for sloppy exposition.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited 5 hours ago

























                        answered 8 hours ago









                        Bill DubuqueBill Dubuque

                        213k29195654




                        213k29195654








                        • 1




                          $begingroup$
                          Prima facie, by examining the Q&A/comments here, and even before your answer, I knew that the book could be depended on one thing - that any reader would be forced to put in their own finishing touches to make the material 'crystallize '. . (+1) for providing a (partial) critical review of the book.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago










                        • $begingroup$
                          @CopyPasteIt It is a popular and widely-respected textbook.
                          $endgroup$
                          – Bill Dubuque
                          6 hours ago






                        • 1




                          $begingroup$
                          Sure hope that knowing that prime numbers can be negative is used in later chapters. And that we all nod our heads and say 'what a modern and elegant approach'.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago














                        • 1




                          $begingroup$
                          Prima facie, by examining the Q&A/comments here, and even before your answer, I knew that the book could be depended on one thing - that any reader would be forced to put in their own finishing touches to make the material 'crystallize '. . (+1) for providing a (partial) critical review of the book.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago










                        • $begingroup$
                          @CopyPasteIt It is a popular and widely-respected textbook.
                          $endgroup$
                          – Bill Dubuque
                          6 hours ago






                        • 1




                          $begingroup$
                          Sure hope that knowing that prime numbers can be negative is used in later chapters. And that we all nod our heads and say 'what a modern and elegant approach'.
                          $endgroup$
                          – CopyPasteIt
                          6 hours ago








                        1




                        1




                        $begingroup$
                        Prima facie, by examining the Q&A/comments here, and even before your answer, I knew that the book could be depended on one thing - that any reader would be forced to put in their own finishing touches to make the material 'crystallize '. . (+1) for providing a (partial) critical review of the book.
                        $endgroup$
                        – CopyPasteIt
                        6 hours ago




                        $begingroup$
                        Prima facie, by examining the Q&A/comments here, and even before your answer, I knew that the book could be depended on one thing - that any reader would be forced to put in their own finishing touches to make the material 'crystallize '. . (+1) for providing a (partial) critical review of the book.
                        $endgroup$
                        – CopyPasteIt
                        6 hours ago












                        $begingroup$
                        @CopyPasteIt It is a popular and widely-respected textbook.
                        $endgroup$
                        – Bill Dubuque
                        6 hours ago




                        $begingroup$
                        @CopyPasteIt It is a popular and widely-respected textbook.
                        $endgroup$
                        – Bill Dubuque
                        6 hours ago




                        1




                        1




                        $begingroup$
                        Sure hope that knowing that prime numbers can be negative is used in later chapters. And that we all nod our heads and say 'what a modern and elegant approach'.
                        $endgroup$
                        – CopyPasteIt
                        6 hours ago




                        $begingroup$
                        Sure hope that knowing that prime numbers can be negative is used in later chapters. And that we all nod our heads and say 'what a modern and elegant approach'.
                        $endgroup$
                        – CopyPasteIt
                        6 hours ago











                        1












                        $begingroup$

                        There is a property of the natural numbers called well-order. A set is well-ordered if every non-empty subset has a least element. So given any property $P$:




                        1. The set of numbers for which $P(n)$ is false is either empty or has a least element.


                        2. Suppose there is some number $n_0$ such that $P(n_0)$ is false. If $n_0$ is the least such number, then obviously $P(n_0-1)$ is true [1] (otherwise $n_0-1$ would be a number for which $P$ is false that is smaller than $n_0$, and so $n_0$ wouldn't be the smallest such number).


                        3. Thus, if we can prove that there is no number $n_0$ such that $P(n_0-1)$ is true and $P(n_0)$ is false (i.e. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$", then we have shown that the set of numbers for which $P$ is false has no least element.


                        4. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$" is equivalent to "$forall n_0: (neg P(n_0-1) lor P(n_0))$", which is in turn equivalent to "$forall n_0: (P(n_0-1) rightarrow P(n_0))$".


                        5. Thus, if we can prove $forall n_0: (P(n_0-1) rightarrow P(n_0))$, then it follows that the set of numbers for which $P(n)$ is false does not have a least element. Since all non-empty sets of natural numbers have a least element, this set must be empty. That is, there are no numbers for which $P(n)$ is false, i.e. $P(n)$ is true for all $n$.



                        [1] There is also the possibility that $n_0-1$ isn't a natural number, which happens when $n_0=0$. Dealing with this possibility requires proving that $P(0)$ is true separately, which is why induction proofs require a base case.



                        So that's the concept behind induction proofs: if the proposition isn't true for all numbers, then there is a non-empty set of numbers for which it is false, which has to have a least element, which means that we have to go from "true" to "false" at some point. Inductive proofs thus look a bit like circular reasoning: you start assuming that the proposition is true, and use that to prove that the proposition is true. But what makes it non-fallacious is that you prove that the proposition is true for a later number by assuming that it's true for an earlier number.



                        The proof that you cite is using the same basic principle as induction, namely the well-order of the natural numbers, but it is skipping the one-by-one sort of process that induction proofs usually use. Instead of saying "If $P(n_0)$ is false, then $P(n_0-1)$ being true leads to a contradiction", it's saying "If $P(n_0)$ is false, then $P(n)$ being true for $n<n_0$ leads to a contradiction". Like a standard induction proof, it superficially looks like circular reasoning, but isn't, because it's proving that the proposition is true for $N$ using the fact that it's true for smaller numbers.






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          There is a property of the natural numbers called well-order. A set is well-ordered if every non-empty subset has a least element. So given any property $P$:




                          1. The set of numbers for which $P(n)$ is false is either empty or has a least element.


                          2. Suppose there is some number $n_0$ such that $P(n_0)$ is false. If $n_0$ is the least such number, then obviously $P(n_0-1)$ is true [1] (otherwise $n_0-1$ would be a number for which $P$ is false that is smaller than $n_0$, and so $n_0$ wouldn't be the smallest such number).


                          3. Thus, if we can prove that there is no number $n_0$ such that $P(n_0-1)$ is true and $P(n_0)$ is false (i.e. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$", then we have shown that the set of numbers for which $P$ is false has no least element.


                          4. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$" is equivalent to "$forall n_0: (neg P(n_0-1) lor P(n_0))$", which is in turn equivalent to "$forall n_0: (P(n_0-1) rightarrow P(n_0))$".


                          5. Thus, if we can prove $forall n_0: (P(n_0-1) rightarrow P(n_0))$, then it follows that the set of numbers for which $P(n)$ is false does not have a least element. Since all non-empty sets of natural numbers have a least element, this set must be empty. That is, there are no numbers for which $P(n)$ is false, i.e. $P(n)$ is true for all $n$.



                          [1] There is also the possibility that $n_0-1$ isn't a natural number, which happens when $n_0=0$. Dealing with this possibility requires proving that $P(0)$ is true separately, which is why induction proofs require a base case.



                          So that's the concept behind induction proofs: if the proposition isn't true for all numbers, then there is a non-empty set of numbers for which it is false, which has to have a least element, which means that we have to go from "true" to "false" at some point. Inductive proofs thus look a bit like circular reasoning: you start assuming that the proposition is true, and use that to prove that the proposition is true. But what makes it non-fallacious is that you prove that the proposition is true for a later number by assuming that it's true for an earlier number.



                          The proof that you cite is using the same basic principle as induction, namely the well-order of the natural numbers, but it is skipping the one-by-one sort of process that induction proofs usually use. Instead of saying "If $P(n_0)$ is false, then $P(n_0-1)$ being true leads to a contradiction", it's saying "If $P(n_0)$ is false, then $P(n)$ being true for $n<n_0$ leads to a contradiction". Like a standard induction proof, it superficially looks like circular reasoning, but isn't, because it's proving that the proposition is true for $N$ using the fact that it's true for smaller numbers.






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            There is a property of the natural numbers called well-order. A set is well-ordered if every non-empty subset has a least element. So given any property $P$:




                            1. The set of numbers for which $P(n)$ is false is either empty or has a least element.


                            2. Suppose there is some number $n_0$ such that $P(n_0)$ is false. If $n_0$ is the least such number, then obviously $P(n_0-1)$ is true [1] (otherwise $n_0-1$ would be a number for which $P$ is false that is smaller than $n_0$, and so $n_0$ wouldn't be the smallest such number).


                            3. Thus, if we can prove that there is no number $n_0$ such that $P(n_0-1)$ is true and $P(n_0)$ is false (i.e. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$", then we have shown that the set of numbers for which $P$ is false has no least element.


                            4. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$" is equivalent to "$forall n_0: (neg P(n_0-1) lor P(n_0))$", which is in turn equivalent to "$forall n_0: (P(n_0-1) rightarrow P(n_0))$".


                            5. Thus, if we can prove $forall n_0: (P(n_0-1) rightarrow P(n_0))$, then it follows that the set of numbers for which $P(n)$ is false does not have a least element. Since all non-empty sets of natural numbers have a least element, this set must be empty. That is, there are no numbers for which $P(n)$ is false, i.e. $P(n)$ is true for all $n$.



                            [1] There is also the possibility that $n_0-1$ isn't a natural number, which happens when $n_0=0$. Dealing with this possibility requires proving that $P(0)$ is true separately, which is why induction proofs require a base case.



                            So that's the concept behind induction proofs: if the proposition isn't true for all numbers, then there is a non-empty set of numbers for which it is false, which has to have a least element, which means that we have to go from "true" to "false" at some point. Inductive proofs thus look a bit like circular reasoning: you start assuming that the proposition is true, and use that to prove that the proposition is true. But what makes it non-fallacious is that you prove that the proposition is true for a later number by assuming that it's true for an earlier number.



                            The proof that you cite is using the same basic principle as induction, namely the well-order of the natural numbers, but it is skipping the one-by-one sort of process that induction proofs usually use. Instead of saying "If $P(n_0)$ is false, then $P(n_0-1)$ being true leads to a contradiction", it's saying "If $P(n_0)$ is false, then $P(n)$ being true for $n<n_0$ leads to a contradiction". Like a standard induction proof, it superficially looks like circular reasoning, but isn't, because it's proving that the proposition is true for $N$ using the fact that it's true for smaller numbers.






                            share|cite|improve this answer









                            $endgroup$



                            There is a property of the natural numbers called well-order. A set is well-ordered if every non-empty subset has a least element. So given any property $P$:




                            1. The set of numbers for which $P(n)$ is false is either empty or has a least element.


                            2. Suppose there is some number $n_0$ such that $P(n_0)$ is false. If $n_0$ is the least such number, then obviously $P(n_0-1)$ is true [1] (otherwise $n_0-1$ would be a number for which $P$ is false that is smaller than $n_0$, and so $n_0$ wouldn't be the smallest such number).


                            3. Thus, if we can prove that there is no number $n_0$ such that $P(n_0-1)$ is true and $P(n_0)$ is false (i.e. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$", then we have shown that the set of numbers for which $P$ is false has no least element.


                            4. "$neg exists n_0: (P(n_0-1) land neg P(n_0))$" is equivalent to "$forall n_0: (neg P(n_0-1) lor P(n_0))$", which is in turn equivalent to "$forall n_0: (P(n_0-1) rightarrow P(n_0))$".


                            5. Thus, if we can prove $forall n_0: (P(n_0-1) rightarrow P(n_0))$, then it follows that the set of numbers for which $P(n)$ is false does not have a least element. Since all non-empty sets of natural numbers have a least element, this set must be empty. That is, there are no numbers for which $P(n)$ is false, i.e. $P(n)$ is true for all $n$.



                            [1] There is also the possibility that $n_0-1$ isn't a natural number, which happens when $n_0=0$. Dealing with this possibility requires proving that $P(0)$ is true separately, which is why induction proofs require a base case.



                            So that's the concept behind induction proofs: if the proposition isn't true for all numbers, then there is a non-empty set of numbers for which it is false, which has to have a least element, which means that we have to go from "true" to "false" at some point. Inductive proofs thus look a bit like circular reasoning: you start assuming that the proposition is true, and use that to prove that the proposition is true. But what makes it non-fallacious is that you prove that the proposition is true for a later number by assuming that it's true for an earlier number.



                            The proof that you cite is using the same basic principle as induction, namely the well-order of the natural numbers, but it is skipping the one-by-one sort of process that induction proofs usually use. Instead of saying "If $P(n_0)$ is false, then $P(n_0-1)$ being true leads to a contradiction", it's saying "If $P(n_0)$ is false, then $P(n)$ being true for $n<n_0$ leads to a contradiction". Like a standard induction proof, it superficially looks like circular reasoning, but isn't, because it's proving that the proposition is true for $N$ using the fact that it's true for smaller numbers.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 14 hours ago









                            AcccumulationAcccumulation

                            7,1552619




                            7,1552619






















                                Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.










                                draft saved

                                draft discarded


















                                Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.













                                Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.












                                Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.
















                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161147%2fproof-of-lemma-every-integer-can-be-written-as-a-product-of-primes%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                                He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                                Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029