Why are synthetic pH indicators used over natural indicators?












9












$begingroup$


Synthetic indicators seem to be exclusively used when determining the pH of a substance with an indicator (with the exception of that school experiment where you boil cabbage to demonstrate natural pH indicators) or in acid-base titrations etc. over natural indicators. Why is this the case when naturally occurring indicator can be easily prepared from accessible and sustainable methods, such as boiling cabbage for example? Intuition seems to suggest that perhaps synthetic indicators are much more accurate and reliable, being specifically designed for the task, is this the case? Or are there other reasons why natural indicators are regularly used as a cost-effective, environmentally friendly and easily prepared alternative to synthetic pH indicators?



What are the advantages/disadvantages of using synthetic indicators over natural ones (or vice versa)?










share|improve this question









New contributor




Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 6




    $begingroup$
    Probably it's still cheaper. Also why waste good cabbage ;)
    $endgroup$
    – Mithoron
    2 days ago






  • 4




    $begingroup$
    Scientists like to minimize unknown factors. If you can give me a top 3 list of what's in red cabbage, I will be impressed.
    $endgroup$
    – Zhe
    2 days ago








  • 1




    $begingroup$
    Another point is that any kind of analysis is about achieving consistency. It is often better to synthesize a pure compound than to try to extract it from some biological and purify it.
    $endgroup$
    – MaxW
    2 days ago






  • 1




    $begingroup$
    Most of the common synthetic pH indicators were probably discovered somewhere around 1850-1920, when organic chemistry really started to take off with simple aryl compounds. This means the indicators are very easy to make with modern knowledge/facilities/supply lines, so they can be made pure in metric ton scale for pennies. Hard to beat those economics.
    $endgroup$
    – Nicolau Saker Neto
    yesterday








  • 3




    $begingroup$
    As a side note, you shouldn't equate "natural" and "environmentally-friendly." Extracting a bunch of hydrogen cyanide from bitter almonds and dumping it in a lake has the same effect as synthesizing a bunch of hydrogen cyanide using Andrussow oxidation and dumping it a lake.
    $endgroup$
    – probably_someone
    yesterday


















9












$begingroup$


Synthetic indicators seem to be exclusively used when determining the pH of a substance with an indicator (with the exception of that school experiment where you boil cabbage to demonstrate natural pH indicators) or in acid-base titrations etc. over natural indicators. Why is this the case when naturally occurring indicator can be easily prepared from accessible and sustainable methods, such as boiling cabbage for example? Intuition seems to suggest that perhaps synthetic indicators are much more accurate and reliable, being specifically designed for the task, is this the case? Or are there other reasons why natural indicators are regularly used as a cost-effective, environmentally friendly and easily prepared alternative to synthetic pH indicators?



What are the advantages/disadvantages of using synthetic indicators over natural ones (or vice versa)?










share|improve this question









New contributor




Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 6




    $begingroup$
    Probably it's still cheaper. Also why waste good cabbage ;)
    $endgroup$
    – Mithoron
    2 days ago






  • 4




    $begingroup$
    Scientists like to minimize unknown factors. If you can give me a top 3 list of what's in red cabbage, I will be impressed.
    $endgroup$
    – Zhe
    2 days ago








  • 1




    $begingroup$
    Another point is that any kind of analysis is about achieving consistency. It is often better to synthesize a pure compound than to try to extract it from some biological and purify it.
    $endgroup$
    – MaxW
    2 days ago






  • 1




    $begingroup$
    Most of the common synthetic pH indicators were probably discovered somewhere around 1850-1920, when organic chemistry really started to take off with simple aryl compounds. This means the indicators are very easy to make with modern knowledge/facilities/supply lines, so they can be made pure in metric ton scale for pennies. Hard to beat those economics.
    $endgroup$
    – Nicolau Saker Neto
    yesterday








  • 3




    $begingroup$
    As a side note, you shouldn't equate "natural" and "environmentally-friendly." Extracting a bunch of hydrogen cyanide from bitter almonds and dumping it in a lake has the same effect as synthesizing a bunch of hydrogen cyanide using Andrussow oxidation and dumping it a lake.
    $endgroup$
    – probably_someone
    yesterday
















9












9








9


2



$begingroup$


Synthetic indicators seem to be exclusively used when determining the pH of a substance with an indicator (with the exception of that school experiment where you boil cabbage to demonstrate natural pH indicators) or in acid-base titrations etc. over natural indicators. Why is this the case when naturally occurring indicator can be easily prepared from accessible and sustainable methods, such as boiling cabbage for example? Intuition seems to suggest that perhaps synthetic indicators are much more accurate and reliable, being specifically designed for the task, is this the case? Or are there other reasons why natural indicators are regularly used as a cost-effective, environmentally friendly and easily prepared alternative to synthetic pH indicators?



What are the advantages/disadvantages of using synthetic indicators over natural ones (or vice versa)?










share|improve this question









New contributor




Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Synthetic indicators seem to be exclusively used when determining the pH of a substance with an indicator (with the exception of that school experiment where you boil cabbage to demonstrate natural pH indicators) or in acid-base titrations etc. over natural indicators. Why is this the case when naturally occurring indicator can be easily prepared from accessible and sustainable methods, such as boiling cabbage for example? Intuition seems to suggest that perhaps synthetic indicators are much more accurate and reliable, being specifically designed for the task, is this the case? Or are there other reasons why natural indicators are regularly used as a cost-effective, environmentally friendly and easily prepared alternative to synthetic pH indicators?



What are the advantages/disadvantages of using synthetic indicators over natural ones (or vice versa)?







acid-base ph titration






share|improve this question









New contributor




Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 2 days ago







Patrick Shway













New contributor




Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Patrick ShwayPatrick Shway

535




535




New contributor




Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Patrick Shway is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 6




    $begingroup$
    Probably it's still cheaper. Also why waste good cabbage ;)
    $endgroup$
    – Mithoron
    2 days ago






  • 4




    $begingroup$
    Scientists like to minimize unknown factors. If you can give me a top 3 list of what's in red cabbage, I will be impressed.
    $endgroup$
    – Zhe
    2 days ago








  • 1




    $begingroup$
    Another point is that any kind of analysis is about achieving consistency. It is often better to synthesize a pure compound than to try to extract it from some biological and purify it.
    $endgroup$
    – MaxW
    2 days ago






  • 1




    $begingroup$
    Most of the common synthetic pH indicators were probably discovered somewhere around 1850-1920, when organic chemistry really started to take off with simple aryl compounds. This means the indicators are very easy to make with modern knowledge/facilities/supply lines, so they can be made pure in metric ton scale for pennies. Hard to beat those economics.
    $endgroup$
    – Nicolau Saker Neto
    yesterday








  • 3




    $begingroup$
    As a side note, you shouldn't equate "natural" and "environmentally-friendly." Extracting a bunch of hydrogen cyanide from bitter almonds and dumping it in a lake has the same effect as synthesizing a bunch of hydrogen cyanide using Andrussow oxidation and dumping it a lake.
    $endgroup$
    – probably_someone
    yesterday
















  • 6




    $begingroup$
    Probably it's still cheaper. Also why waste good cabbage ;)
    $endgroup$
    – Mithoron
    2 days ago






  • 4




    $begingroup$
    Scientists like to minimize unknown factors. If you can give me a top 3 list of what's in red cabbage, I will be impressed.
    $endgroup$
    – Zhe
    2 days ago








  • 1




    $begingroup$
    Another point is that any kind of analysis is about achieving consistency. It is often better to synthesize a pure compound than to try to extract it from some biological and purify it.
    $endgroup$
    – MaxW
    2 days ago






  • 1




    $begingroup$
    Most of the common synthetic pH indicators were probably discovered somewhere around 1850-1920, when organic chemistry really started to take off with simple aryl compounds. This means the indicators are very easy to make with modern knowledge/facilities/supply lines, so they can be made pure in metric ton scale for pennies. Hard to beat those economics.
    $endgroup$
    – Nicolau Saker Neto
    yesterday








  • 3




    $begingroup$
    As a side note, you shouldn't equate "natural" and "environmentally-friendly." Extracting a bunch of hydrogen cyanide from bitter almonds and dumping it in a lake has the same effect as synthesizing a bunch of hydrogen cyanide using Andrussow oxidation and dumping it a lake.
    $endgroup$
    – probably_someone
    yesterday










6




6




$begingroup$
Probably it's still cheaper. Also why waste good cabbage ;)
$endgroup$
– Mithoron
2 days ago




$begingroup$
Probably it's still cheaper. Also why waste good cabbage ;)
$endgroup$
– Mithoron
2 days ago




4




4




$begingroup$
Scientists like to minimize unknown factors. If you can give me a top 3 list of what's in red cabbage, I will be impressed.
$endgroup$
– Zhe
2 days ago






$begingroup$
Scientists like to minimize unknown factors. If you can give me a top 3 list of what's in red cabbage, I will be impressed.
$endgroup$
– Zhe
2 days ago






1




1




$begingroup$
Another point is that any kind of analysis is about achieving consistency. It is often better to synthesize a pure compound than to try to extract it from some biological and purify it.
$endgroup$
– MaxW
2 days ago




$begingroup$
Another point is that any kind of analysis is about achieving consistency. It is often better to synthesize a pure compound than to try to extract it from some biological and purify it.
$endgroup$
– MaxW
2 days ago




1




1




$begingroup$
Most of the common synthetic pH indicators were probably discovered somewhere around 1850-1920, when organic chemistry really started to take off with simple aryl compounds. This means the indicators are very easy to make with modern knowledge/facilities/supply lines, so they can be made pure in metric ton scale for pennies. Hard to beat those economics.
$endgroup$
– Nicolau Saker Neto
yesterday






$begingroup$
Most of the common synthetic pH indicators were probably discovered somewhere around 1850-1920, when organic chemistry really started to take off with simple aryl compounds. This means the indicators are very easy to make with modern knowledge/facilities/supply lines, so they can be made pure in metric ton scale for pennies. Hard to beat those economics.
$endgroup$
– Nicolau Saker Neto
yesterday






3




3




$begingroup$
As a side note, you shouldn't equate "natural" and "environmentally-friendly." Extracting a bunch of hydrogen cyanide from bitter almonds and dumping it in a lake has the same effect as synthesizing a bunch of hydrogen cyanide using Andrussow oxidation and dumping it a lake.
$endgroup$
– probably_someone
yesterday






$begingroup$
As a side note, you shouldn't equate "natural" and "environmentally-friendly." Extracting a bunch of hydrogen cyanide from bitter almonds and dumping it in a lake has the same effect as synthesizing a bunch of hydrogen cyanide using Andrussow oxidation and dumping it a lake.
$endgroup$
– probably_someone
yesterday












2 Answers
2






active

oldest

votes


















11












$begingroup$

In acid-base titrations, synthetic indicators are exclusively used to find accurate end-point determinations because they always have a highly defined color change at certain pHs. For example, phenolphthalein ($mathrm{p}K_mathrm{a} = 9.7$ at $pu{25 ^{circ}C}$) is colorless in acidic solutions (precisely $0 lt mathrm{pH} lt 8.2$), but it is pink in basic conditions when the pH of the solution goes above 8.2 (precisely $8.2 lt mathrm{pH} lt 12.0$), which makes it ideal for strong acid-strong base titrations (Wikipedia). On the other hand, bromothymol blue ($mathrm{p}K_mathrm{a} = 7.1$ at $pu{25 ^{circ}C}$) is yellow in acidic solutions (precisely $0 lt mathrm{pH} lt 6.0$), but it is blue in basic conditions when the pH of the solution goes above 7.6 ($7.6 lt mathrm{pH}$). However, it shows greenish-blue color in a neutral solution (precisely $6.0 lt mathrm{pH} lt 7.6$; see the picture below).



Bromothymol blue_pH_Range



It also change color from yellow to pink in high acidic conditions such in concentrated hydrochloric acid ($0 gt mathrm{pH}$; see most left test tube in picture below), thus it is ideal to use as universal indicator (Wikipedia). These two example would clearly show you, as you correctly put it, synthetic indicators are much more accurate and reliable since they have being specifically designed for the task.



Bromothymol blue_pH_0



Sure, natural indicators could be easily prepared from easily attainable row materials, and hence, could be regularly used as a cost-effective and environmentally friendly alternative to synthetic pH indicators, but I regret to say that it can be used only in high school science activities to fascinate science loving kids. Since, those natural sources contain several color changing substances (e.g., flavanones, flavones, flavonols, and anthocyanidins), the color change at the end-points are not sharp, perhaps, due to difficulty of determining $mathrm{p}K_mathrm{a}$ of relevant indicator(s). For example, although boiled red cabbage water can be used as a universal indicator in high school projects and show the end point of an acid-base titration (see following figure), it cannot be used in day-to-day analytical lab to do accurate calculations.



Natural-Indicators



Also, another reason for not using those natural indicator is most of these dyes tends to decompose in higher pH values. The best example is most common natural color indicator, anthocyanidins. The stability of anthocyanidins is dependent on pH. At a low pH (acidic conditions), colored anthocyanidins are present, whereas at a higher pH (basic conditions) the colorless chalcones forms are present (see scheme below) (Wikipedia).



Anthocyanidins



Most importantly, aside from above facts that flavonols including anthocyanidins have been studied extensively in drug development due to their plethora of biological activities (Ref.1). Thus they have been targetted in much more important tasks than usage as pH indicators.



Reference:




  1. M. Rahnasto-Rilla, J. Tyni, M. Huovinen, E. Jarho, T. Kulikowicz, S. Ravichandran, V. A. Bohr, L. Ferrucci, M. Lahtela-Kakkonen, R. Moaddel, “Natural polyphenols as sirtuin 6 modulators,” Scientific Reports 2018, 8, 4163 (11 pages) (DOI:10.1038/s41598-018-22388-5).






share|improve this answer











$endgroup$





















    4












    $begingroup$

    The main issue with natural indicators is their purity, long term chemical stability and shelf-life. Note that some natural indicators are pretty good for example the famous litmus paper is obtained from lichens. It is a mixture of several pigments like the red cabbage. Sometimes titrations are carried out at warm temperatures, do you think the pigments in cabbage survive heat in acidic and basic solutions?






    share|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "431"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      Patrick Shway is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111444%2fwhy-are-synthetic-ph-indicators-used-over-natural-indicators%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      In acid-base titrations, synthetic indicators are exclusively used to find accurate end-point determinations because they always have a highly defined color change at certain pHs. For example, phenolphthalein ($mathrm{p}K_mathrm{a} = 9.7$ at $pu{25 ^{circ}C}$) is colorless in acidic solutions (precisely $0 lt mathrm{pH} lt 8.2$), but it is pink in basic conditions when the pH of the solution goes above 8.2 (precisely $8.2 lt mathrm{pH} lt 12.0$), which makes it ideal for strong acid-strong base titrations (Wikipedia). On the other hand, bromothymol blue ($mathrm{p}K_mathrm{a} = 7.1$ at $pu{25 ^{circ}C}$) is yellow in acidic solutions (precisely $0 lt mathrm{pH} lt 6.0$), but it is blue in basic conditions when the pH of the solution goes above 7.6 ($7.6 lt mathrm{pH}$). However, it shows greenish-blue color in a neutral solution (precisely $6.0 lt mathrm{pH} lt 7.6$; see the picture below).



      Bromothymol blue_pH_Range



      It also change color from yellow to pink in high acidic conditions such in concentrated hydrochloric acid ($0 gt mathrm{pH}$; see most left test tube in picture below), thus it is ideal to use as universal indicator (Wikipedia). These two example would clearly show you, as you correctly put it, synthetic indicators are much more accurate and reliable since they have being specifically designed for the task.



      Bromothymol blue_pH_0



      Sure, natural indicators could be easily prepared from easily attainable row materials, and hence, could be regularly used as a cost-effective and environmentally friendly alternative to synthetic pH indicators, but I regret to say that it can be used only in high school science activities to fascinate science loving kids. Since, those natural sources contain several color changing substances (e.g., flavanones, flavones, flavonols, and anthocyanidins), the color change at the end-points are not sharp, perhaps, due to difficulty of determining $mathrm{p}K_mathrm{a}$ of relevant indicator(s). For example, although boiled red cabbage water can be used as a universal indicator in high school projects and show the end point of an acid-base titration (see following figure), it cannot be used in day-to-day analytical lab to do accurate calculations.



      Natural-Indicators



      Also, another reason for not using those natural indicator is most of these dyes tends to decompose in higher pH values. The best example is most common natural color indicator, anthocyanidins. The stability of anthocyanidins is dependent on pH. At a low pH (acidic conditions), colored anthocyanidins are present, whereas at a higher pH (basic conditions) the colorless chalcones forms are present (see scheme below) (Wikipedia).



      Anthocyanidins



      Most importantly, aside from above facts that flavonols including anthocyanidins have been studied extensively in drug development due to their plethora of biological activities (Ref.1). Thus they have been targetted in much more important tasks than usage as pH indicators.



      Reference:




      1. M. Rahnasto-Rilla, J. Tyni, M. Huovinen, E. Jarho, T. Kulikowicz, S. Ravichandran, V. A. Bohr, L. Ferrucci, M. Lahtela-Kakkonen, R. Moaddel, “Natural polyphenols as sirtuin 6 modulators,” Scientific Reports 2018, 8, 4163 (11 pages) (DOI:10.1038/s41598-018-22388-5).






      share|improve this answer











      $endgroup$


















        11












        $begingroup$

        In acid-base titrations, synthetic indicators are exclusively used to find accurate end-point determinations because they always have a highly defined color change at certain pHs. For example, phenolphthalein ($mathrm{p}K_mathrm{a} = 9.7$ at $pu{25 ^{circ}C}$) is colorless in acidic solutions (precisely $0 lt mathrm{pH} lt 8.2$), but it is pink in basic conditions when the pH of the solution goes above 8.2 (precisely $8.2 lt mathrm{pH} lt 12.0$), which makes it ideal for strong acid-strong base titrations (Wikipedia). On the other hand, bromothymol blue ($mathrm{p}K_mathrm{a} = 7.1$ at $pu{25 ^{circ}C}$) is yellow in acidic solutions (precisely $0 lt mathrm{pH} lt 6.0$), but it is blue in basic conditions when the pH of the solution goes above 7.6 ($7.6 lt mathrm{pH}$). However, it shows greenish-blue color in a neutral solution (precisely $6.0 lt mathrm{pH} lt 7.6$; see the picture below).



        Bromothymol blue_pH_Range



        It also change color from yellow to pink in high acidic conditions such in concentrated hydrochloric acid ($0 gt mathrm{pH}$; see most left test tube in picture below), thus it is ideal to use as universal indicator (Wikipedia). These two example would clearly show you, as you correctly put it, synthetic indicators are much more accurate and reliable since they have being specifically designed for the task.



        Bromothymol blue_pH_0



        Sure, natural indicators could be easily prepared from easily attainable row materials, and hence, could be regularly used as a cost-effective and environmentally friendly alternative to synthetic pH indicators, but I regret to say that it can be used only in high school science activities to fascinate science loving kids. Since, those natural sources contain several color changing substances (e.g., flavanones, flavones, flavonols, and anthocyanidins), the color change at the end-points are not sharp, perhaps, due to difficulty of determining $mathrm{p}K_mathrm{a}$ of relevant indicator(s). For example, although boiled red cabbage water can be used as a universal indicator in high school projects and show the end point of an acid-base titration (see following figure), it cannot be used in day-to-day analytical lab to do accurate calculations.



        Natural-Indicators



        Also, another reason for not using those natural indicator is most of these dyes tends to decompose in higher pH values. The best example is most common natural color indicator, anthocyanidins. The stability of anthocyanidins is dependent on pH. At a low pH (acidic conditions), colored anthocyanidins are present, whereas at a higher pH (basic conditions) the colorless chalcones forms are present (see scheme below) (Wikipedia).



        Anthocyanidins



        Most importantly, aside from above facts that flavonols including anthocyanidins have been studied extensively in drug development due to their plethora of biological activities (Ref.1). Thus they have been targetted in much more important tasks than usage as pH indicators.



        Reference:




        1. M. Rahnasto-Rilla, J. Tyni, M. Huovinen, E. Jarho, T. Kulikowicz, S. Ravichandran, V. A. Bohr, L. Ferrucci, M. Lahtela-Kakkonen, R. Moaddel, “Natural polyphenols as sirtuin 6 modulators,” Scientific Reports 2018, 8, 4163 (11 pages) (DOI:10.1038/s41598-018-22388-5).






        share|improve this answer











        $endgroup$
















          11












          11








          11





          $begingroup$

          In acid-base titrations, synthetic indicators are exclusively used to find accurate end-point determinations because they always have a highly defined color change at certain pHs. For example, phenolphthalein ($mathrm{p}K_mathrm{a} = 9.7$ at $pu{25 ^{circ}C}$) is colorless in acidic solutions (precisely $0 lt mathrm{pH} lt 8.2$), but it is pink in basic conditions when the pH of the solution goes above 8.2 (precisely $8.2 lt mathrm{pH} lt 12.0$), which makes it ideal for strong acid-strong base titrations (Wikipedia). On the other hand, bromothymol blue ($mathrm{p}K_mathrm{a} = 7.1$ at $pu{25 ^{circ}C}$) is yellow in acidic solutions (precisely $0 lt mathrm{pH} lt 6.0$), but it is blue in basic conditions when the pH of the solution goes above 7.6 ($7.6 lt mathrm{pH}$). However, it shows greenish-blue color in a neutral solution (precisely $6.0 lt mathrm{pH} lt 7.6$; see the picture below).



          Bromothymol blue_pH_Range



          It also change color from yellow to pink in high acidic conditions such in concentrated hydrochloric acid ($0 gt mathrm{pH}$; see most left test tube in picture below), thus it is ideal to use as universal indicator (Wikipedia). These two example would clearly show you, as you correctly put it, synthetic indicators are much more accurate and reliable since they have being specifically designed for the task.



          Bromothymol blue_pH_0



          Sure, natural indicators could be easily prepared from easily attainable row materials, and hence, could be regularly used as a cost-effective and environmentally friendly alternative to synthetic pH indicators, but I regret to say that it can be used only in high school science activities to fascinate science loving kids. Since, those natural sources contain several color changing substances (e.g., flavanones, flavones, flavonols, and anthocyanidins), the color change at the end-points are not sharp, perhaps, due to difficulty of determining $mathrm{p}K_mathrm{a}$ of relevant indicator(s). For example, although boiled red cabbage water can be used as a universal indicator in high school projects and show the end point of an acid-base titration (see following figure), it cannot be used in day-to-day analytical lab to do accurate calculations.



          Natural-Indicators



          Also, another reason for not using those natural indicator is most of these dyes tends to decompose in higher pH values. The best example is most common natural color indicator, anthocyanidins. The stability of anthocyanidins is dependent on pH. At a low pH (acidic conditions), colored anthocyanidins are present, whereas at a higher pH (basic conditions) the colorless chalcones forms are present (see scheme below) (Wikipedia).



          Anthocyanidins



          Most importantly, aside from above facts that flavonols including anthocyanidins have been studied extensively in drug development due to their plethora of biological activities (Ref.1). Thus they have been targetted in much more important tasks than usage as pH indicators.



          Reference:




          1. M. Rahnasto-Rilla, J. Tyni, M. Huovinen, E. Jarho, T. Kulikowicz, S. Ravichandran, V. A. Bohr, L. Ferrucci, M. Lahtela-Kakkonen, R. Moaddel, “Natural polyphenols as sirtuin 6 modulators,” Scientific Reports 2018, 8, 4163 (11 pages) (DOI:10.1038/s41598-018-22388-5).






          share|improve this answer











          $endgroup$



          In acid-base titrations, synthetic indicators are exclusively used to find accurate end-point determinations because they always have a highly defined color change at certain pHs. For example, phenolphthalein ($mathrm{p}K_mathrm{a} = 9.7$ at $pu{25 ^{circ}C}$) is colorless in acidic solutions (precisely $0 lt mathrm{pH} lt 8.2$), but it is pink in basic conditions when the pH of the solution goes above 8.2 (precisely $8.2 lt mathrm{pH} lt 12.0$), which makes it ideal for strong acid-strong base titrations (Wikipedia). On the other hand, bromothymol blue ($mathrm{p}K_mathrm{a} = 7.1$ at $pu{25 ^{circ}C}$) is yellow in acidic solutions (precisely $0 lt mathrm{pH} lt 6.0$), but it is blue in basic conditions when the pH of the solution goes above 7.6 ($7.6 lt mathrm{pH}$). However, it shows greenish-blue color in a neutral solution (precisely $6.0 lt mathrm{pH} lt 7.6$; see the picture below).



          Bromothymol blue_pH_Range



          It also change color from yellow to pink in high acidic conditions such in concentrated hydrochloric acid ($0 gt mathrm{pH}$; see most left test tube in picture below), thus it is ideal to use as universal indicator (Wikipedia). These two example would clearly show you, as you correctly put it, synthetic indicators are much more accurate and reliable since they have being specifically designed for the task.



          Bromothymol blue_pH_0



          Sure, natural indicators could be easily prepared from easily attainable row materials, and hence, could be regularly used as a cost-effective and environmentally friendly alternative to synthetic pH indicators, but I regret to say that it can be used only in high school science activities to fascinate science loving kids. Since, those natural sources contain several color changing substances (e.g., flavanones, flavones, flavonols, and anthocyanidins), the color change at the end-points are not sharp, perhaps, due to difficulty of determining $mathrm{p}K_mathrm{a}$ of relevant indicator(s). For example, although boiled red cabbage water can be used as a universal indicator in high school projects and show the end point of an acid-base titration (see following figure), it cannot be used in day-to-day analytical lab to do accurate calculations.



          Natural-Indicators



          Also, another reason for not using those natural indicator is most of these dyes tends to decompose in higher pH values. The best example is most common natural color indicator, anthocyanidins. The stability of anthocyanidins is dependent on pH. At a low pH (acidic conditions), colored anthocyanidins are present, whereas at a higher pH (basic conditions) the colorless chalcones forms are present (see scheme below) (Wikipedia).



          Anthocyanidins



          Most importantly, aside from above facts that flavonols including anthocyanidins have been studied extensively in drug development due to their plethora of biological activities (Ref.1). Thus they have been targetted in much more important tasks than usage as pH indicators.



          Reference:




          1. M. Rahnasto-Rilla, J. Tyni, M. Huovinen, E. Jarho, T. Kulikowicz, S. Ravichandran, V. A. Bohr, L. Ferrucci, M. Lahtela-Kakkonen, R. Moaddel, “Natural polyphenols as sirtuin 6 modulators,” Scientific Reports 2018, 8, 4163 (11 pages) (DOI:10.1038/s41598-018-22388-5).







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited yesterday

























          answered 2 days ago









          Mathew MahindaratneMathew Mahindaratne

          4,115519




          4,115519























              4












              $begingroup$

              The main issue with natural indicators is their purity, long term chemical stability and shelf-life. Note that some natural indicators are pretty good for example the famous litmus paper is obtained from lichens. It is a mixture of several pigments like the red cabbage. Sometimes titrations are carried out at warm temperatures, do you think the pigments in cabbage survive heat in acidic and basic solutions?






              share|improve this answer









              $endgroup$


















                4












                $begingroup$

                The main issue with natural indicators is their purity, long term chemical stability and shelf-life. Note that some natural indicators are pretty good for example the famous litmus paper is obtained from lichens. It is a mixture of several pigments like the red cabbage. Sometimes titrations are carried out at warm temperatures, do you think the pigments in cabbage survive heat in acidic and basic solutions?






                share|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  The main issue with natural indicators is their purity, long term chemical stability and shelf-life. Note that some natural indicators are pretty good for example the famous litmus paper is obtained from lichens. It is a mixture of several pigments like the red cabbage. Sometimes titrations are carried out at warm temperatures, do you think the pigments in cabbage survive heat in acidic and basic solutions?






                  share|improve this answer









                  $endgroup$



                  The main issue with natural indicators is their purity, long term chemical stability and shelf-life. Note that some natural indicators are pretty good for example the famous litmus paper is obtained from lichens. It is a mixture of several pigments like the red cabbage. Sometimes titrations are carried out at warm temperatures, do you think the pigments in cabbage survive heat in acidic and basic solutions?







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 2 days ago









                  M. FarooqM. Farooq

                  1,06419




                  1,06419






















                      Patrick Shway is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      Patrick Shway is a new contributor. Be nice, and check out our Code of Conduct.













                      Patrick Shway is a new contributor. Be nice, and check out our Code of Conduct.












                      Patrick Shway is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to Chemistry Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111444%2fwhy-are-synthetic-ph-indicators-used-over-natural-indicators%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                      He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                      Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029