Add an angle to a sphere












6















I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



    % Steradian cone in sphere
% Author: Bartman
documentclass[tikz,border=10pt]{standalone}
%%%<
usepackage{verbatim}
%%%>
begin{comment}
:Title: Steradian cone in sphere
:Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
:Author: Bartman
:Slug: steradian-cone-sphere

A graphical representation of a steradian.
It is the solid angle subtended at the center
of a unit sphere by a unit area on its surface. (Wikipedia)

Made by Bartman on
http://golatex.de/3d-kugel-in-tikz-t17380.html

The part of the cone is from http://tex.stackexchange.com/a/186109/213
end{comment}
usepackage{sansmath}
usetikzlibrary{shadings,intersections}
begin{document}
begin{tikzpicture}[font = sansmath]
coordinate (O) at (0,0);



% ball background color
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

% cone
begin{scope}
defrx{0.71}% horizontal radius of the ellipse
defry{0.15}% vertical radius of the ellipse
defz{0.725}% distance from center of ellipse to origin

path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = {of = ellipse and horizontal}];


end{scope}


% ball
draw (O) circle [radius=2cm];
% label of ball center point
filldraw (O) circle (1pt) node[below] {$O$};

% radius
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
draw[densely dashed] (O) -- (1.33,1.33);

% cut of ball surface
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];

% label of cut of ball surface
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};
end{tikzpicture}
end{document}


I want to add an angle alpha like this:



enter image description here



How can I do this?










share|improve this question







New contributor




medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    6















    I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



        % Steradian cone in sphere
    % Author: Bartman
    documentclass[tikz,border=10pt]{standalone}
    %%%<
    usepackage{verbatim}
    %%%>
    begin{comment}
    :Title: Steradian cone in sphere
    :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
    :Author: Bartman
    :Slug: steradian-cone-sphere

    A graphical representation of a steradian.
    It is the solid angle subtended at the center
    of a unit sphere by a unit area on its surface. (Wikipedia)

    Made by Bartman on
    http://golatex.de/3d-kugel-in-tikz-t17380.html

    The part of the cone is from http://tex.stackexchange.com/a/186109/213
    end{comment}
    usepackage{sansmath}
    usetikzlibrary{shadings,intersections}
    begin{document}
    begin{tikzpicture}[font = sansmath]
    coordinate (O) at (0,0);



    % ball background color
    shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

    % cone
    begin{scope}
    defrx{0.71}% horizontal radius of the ellipse
    defry{0.15}% vertical radius of the ellipse
    defz{0.725}% distance from center of ellipse to origin

    path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
    path [name path = horizontal] (-rx,z-ry*ry/z)
    -- (rx,z-ry*ry/z);
    path [name intersections = {of = ellipse and horizontal}];


    end{scope}


    % ball
    draw (O) circle [radius=2cm];
    % label of ball center point
    filldraw (O) circle (1pt) node[below] {$O$};

    % radius
    draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
    draw[densely dashed] (O) -- (1.33,1.33);

    % cut of ball surface
    draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
    x radius = 13.8mm, y radius = 3.6mm];
    draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
    x radius = 13.75mm, y radius = 3.15mm];

    % label of cut of ball surface
    draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};
    end{tikzpicture}
    end{document}


    I want to add an angle alpha like this:



    enter image description here



    How can I do this?










    share|improve this question







    New contributor




    medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      6












      6








      6


      1






      I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



          % Steradian cone in sphere
      % Author: Bartman
      documentclass[tikz,border=10pt]{standalone}
      %%%<
      usepackage{verbatim}
      %%%>
      begin{comment}
      :Title: Steradian cone in sphere
      :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
      :Author: Bartman
      :Slug: steradian-cone-sphere

      A graphical representation of a steradian.
      It is the solid angle subtended at the center
      of a unit sphere by a unit area on its surface. (Wikipedia)

      Made by Bartman on
      http://golatex.de/3d-kugel-in-tikz-t17380.html

      The part of the cone is from http://tex.stackexchange.com/a/186109/213
      end{comment}
      usepackage{sansmath}
      usetikzlibrary{shadings,intersections}
      begin{document}
      begin{tikzpicture}[font = sansmath]
      coordinate (O) at (0,0);



      % ball background color
      shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

      % cone
      begin{scope}
      defrx{0.71}% horizontal radius of the ellipse
      defry{0.15}% vertical radius of the ellipse
      defz{0.725}% distance from center of ellipse to origin

      path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
      path [name path = horizontal] (-rx,z-ry*ry/z)
      -- (rx,z-ry*ry/z);
      path [name intersections = {of = ellipse and horizontal}];


      end{scope}


      % ball
      draw (O) circle [radius=2cm];
      % label of ball center point
      filldraw (O) circle (1pt) node[below] {$O$};

      % radius
      draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
      draw[densely dashed] (O) -- (1.33,1.33);

      % cut of ball surface
      draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
      x radius = 13.8mm, y radius = 3.6mm];
      draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
      x radius = 13.75mm, y radius = 3.15mm];

      % label of cut of ball surface
      draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};
      end{tikzpicture}
      end{document}


      I want to add an angle alpha like this:



      enter image description here



      How can I do this?










      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



          % Steradian cone in sphere
      % Author: Bartman
      documentclass[tikz,border=10pt]{standalone}
      %%%<
      usepackage{verbatim}
      %%%>
      begin{comment}
      :Title: Steradian cone in sphere
      :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
      :Author: Bartman
      :Slug: steradian-cone-sphere

      A graphical representation of a steradian.
      It is the solid angle subtended at the center
      of a unit sphere by a unit area on its surface. (Wikipedia)

      Made by Bartman on
      http://golatex.de/3d-kugel-in-tikz-t17380.html

      The part of the cone is from http://tex.stackexchange.com/a/186109/213
      end{comment}
      usepackage{sansmath}
      usetikzlibrary{shadings,intersections}
      begin{document}
      begin{tikzpicture}[font = sansmath]
      coordinate (O) at (0,0);



      % ball background color
      shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

      % cone
      begin{scope}
      defrx{0.71}% horizontal radius of the ellipse
      defry{0.15}% vertical radius of the ellipse
      defz{0.725}% distance from center of ellipse to origin

      path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
      path [name path = horizontal] (-rx,z-ry*ry/z)
      -- (rx,z-ry*ry/z);
      path [name intersections = {of = ellipse and horizontal}];


      end{scope}


      % ball
      draw (O) circle [radius=2cm];
      % label of ball center point
      filldraw (O) circle (1pt) node[below] {$O$};

      % radius
      draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
      draw[densely dashed] (O) -- (1.33,1.33);

      % cut of ball surface
      draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
      x radius = 13.8mm, y radius = 3.6mm];
      draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
      x radius = 13.75mm, y radius = 3.15mm];

      % label of cut of ball surface
      draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};
      end{tikzpicture}
      end{document}


      I want to add an angle alpha like this:



      enter image description here



      How can I do this?







      tikz-pgf tikz-angles






      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked yesterday









      medihdemedihde

      423




      423




      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          5














          First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



          documentclass[tikz,border=10pt]{standalone}
          usepackage{sansmath}
          usetikzlibrary{shadings,intersections,quotes,angles}
          begin{document}
          begin{tikzpicture}[font = sansmath]
          coordinate (O) at (0,0);
          shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
          begin{scope}
          defrx{0.71}% horizontal radius of the ellipse
          defry{0.15}% vertical radius of the ellipse
          defz{0.725}% distance from center of ellipse to origin
          path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
          path [name path = horizontal] (-rx,z-ry*ry/z)
          -- (rx,z-ry*ry/z);
          path [name intersections = {of = ellipse and horizontal}];
          end{scope}
          draw (O) circle [radius=2cm];
          filldraw (O) circle (1pt) node[below] {$O$};
          draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
          draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
          draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
          x radius = 13.8mm, y radius = 3.6mm];
          draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
          x radius = 13.75mm, y radius = 3.15mm];
          draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};

          % Command for the angle
          pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] {angle=y--O--x};
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer































            5














            This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.





            1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

            2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

            3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.




            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            usetikzlibrary{3d,backgrounds,quotes,angles}
            begin{document}
            tdplotsetmaincoords{80}{00}
            begin{tikzpicture}[tdplot_main_coords]
            pgfmathsetmacro{R}{2} % radius
            pgfmathsetmacro{myang}{50} % latitude angle of the red circle
            coordinate (O) at (0,0,0);
            shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
            (O) circle [radius = R*1cm];
            begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
            % angVis from https://tex.stackexchange.com/a/49589/121799
            pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
            begin{scope}[on background layer]
            draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
            end{scope}
            draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
            path (0:{R*cos(myang)}) coordinate (R)
            (180:{R*cos(myang)}) coordinate (L);
            end{scope}
            begin{scope}[on background layer]
            draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
            fill (O) circle[radius=1pt] node[below] {$O$};
            pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
            {angle=R--O--L};
            end{scope}
            end{tikzpicture}
            end{document}


            enter image description here



            The following animation shows that you can dial view and latitude as you wish.



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            usetikzlibrary{3d,backgrounds,quotes,angles}
            begin{document}
            foreach Angle in {5,15,...,355}
            {tdplotsetmaincoords{70+cos(Angle)}{00}
            begin{tikzpicture}[tdplot_main_coords]
            pgfmathsetmacro{R}{2} % radius
            pgfmathsetmacro{myang}{40+15*sin(2*Angle)} % latitude angle of the red circle
            coordinate (O) at (0,0,0);
            shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
            (O) circle [radius = R*1cm];
            begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
            % angVis from https://tex.stackexchange.com/a/49589/121799
            pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
            begin{scope}[on background layer]
            draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
            end{scope}
            draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
            path (0:{R*cos(myang)}) coordinate (R)
            (180:{R*cos(myang)}) coordinate (L);
            end{scope}
            begin{scope}[on background layer]
            draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
            fill (O) circle[radius=1pt] node[below] {$O$};
            pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
            {angle=R--O--L};
            end{scope}
            end{tikzpicture}}
            end{document}


            enter image description here






            share|improve this answer
























            • Is this a cone in a sphere?

              – minhthien_2016
              16 hours ago













            • @minhthien_2016 It could be one.

              – marmot
              13 hours ago












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "85"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            medihde is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5














            First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



            documentclass[tikz,border=10pt]{standalone}
            usepackage{sansmath}
            usetikzlibrary{shadings,intersections,quotes,angles}
            begin{document}
            begin{tikzpicture}[font = sansmath]
            coordinate (O) at (0,0);
            shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
            begin{scope}
            defrx{0.71}% horizontal radius of the ellipse
            defry{0.15}% vertical radius of the ellipse
            defz{0.725}% distance from center of ellipse to origin
            path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
            path [name path = horizontal] (-rx,z-ry*ry/z)
            -- (rx,z-ry*ry/z);
            path [name intersections = {of = ellipse and horizontal}];
            end{scope}
            draw (O) circle [radius=2cm];
            filldraw (O) circle (1pt) node[below] {$O$};
            draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
            draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
            draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
            x radius = 13.8mm, y radius = 3.6mm];
            draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
            x radius = 13.75mm, y radius = 3.15mm];
            draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};

            % Command for the angle
            pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] {angle=y--O--x};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer




























              5














              First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



              documentclass[tikz,border=10pt]{standalone}
              usepackage{sansmath}
              usetikzlibrary{shadings,intersections,quotes,angles}
              begin{document}
              begin{tikzpicture}[font = sansmath]
              coordinate (O) at (0,0);
              shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
              begin{scope}
              defrx{0.71}% horizontal radius of the ellipse
              defry{0.15}% vertical radius of the ellipse
              defz{0.725}% distance from center of ellipse to origin
              path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
              path [name path = horizontal] (-rx,z-ry*ry/z)
              -- (rx,z-ry*ry/z);
              path [name intersections = {of = ellipse and horizontal}];
              end{scope}
              draw (O) circle [radius=2cm];
              filldraw (O) circle (1pt) node[below] {$O$};
              draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
              draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
              draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
              x radius = 13.8mm, y radius = 3.6mm];
              draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
              x radius = 13.75mm, y radius = 3.15mm];
              draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};

              % Command for the angle
              pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] {angle=y--O--x};
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer


























                5












                5








                5







                First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



                documentclass[tikz,border=10pt]{standalone}
                usepackage{sansmath}
                usetikzlibrary{shadings,intersections,quotes,angles}
                begin{document}
                begin{tikzpicture}[font = sansmath]
                coordinate (O) at (0,0);
                shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
                begin{scope}
                defrx{0.71}% horizontal radius of the ellipse
                defry{0.15}% vertical radius of the ellipse
                defz{0.725}% distance from center of ellipse to origin
                path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
                path [name path = horizontal] (-rx,z-ry*ry/z)
                -- (rx,z-ry*ry/z);
                path [name intersections = {of = ellipse and horizontal}];
                end{scope}
                draw (O) circle [radius=2cm];
                filldraw (O) circle (1pt) node[below] {$O$};
                draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
                draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
                draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
                x radius = 13.8mm, y radius = 3.6mm];
                draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
                x radius = 13.75mm, y radius = 3.15mm];
                draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};

                % Command for the angle
                pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] {angle=y--O--x};
                end{tikzpicture}
                end{document}


                enter image description here






                share|improve this answer













                First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



                documentclass[tikz,border=10pt]{standalone}
                usepackage{sansmath}
                usetikzlibrary{shadings,intersections,quotes,angles}
                begin{document}
                begin{tikzpicture}[font = sansmath]
                coordinate (O) at (0,0);
                shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
                begin{scope}
                defrx{0.71}% horizontal radius of the ellipse
                defry{0.15}% vertical radius of the ellipse
                defz{0.725}% distance from center of ellipse to origin
                path [name path = ellipse] (0,z) ellipse ({rx} and {ry});
                path [name path = horizontal] (-rx,z-ry*ry/z)
                -- (rx,z-ry*ry/z);
                path [name intersections = {of = ellipse and horizontal}];
                end{scope}
                draw (O) circle [radius=2cm];
                filldraw (O) circle (1pt) node[below] {$O$};
                draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
                draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
                draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
                x radius = 13.8mm, y radius = 3.6mm];
                draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
                x radius = 13.75mm, y radius = 3.15mm];
                draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) {$B$};

                % Command for the angle
                pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] {angle=y--O--x};
                end{tikzpicture}
                end{document}


                enter image description here







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered yesterday









                JouleVJouleV

                12k22662




                12k22662























                    5














                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.





                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.




                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    tdplotsetmaincoords{80}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{50} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}
                    end{document}


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    foreach Angle in {5,15,...,355}
                    {tdplotsetmaincoords{70+cos(Angle)}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{40+15*sin(2*Angle)} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}}
                    end{document}


                    enter image description here






                    share|improve this answer
























                    • Is this a cone in a sphere?

                      – minhthien_2016
                      16 hours ago













                    • @minhthien_2016 It could be one.

                      – marmot
                      13 hours ago
















                    5














                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.





                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.




                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    tdplotsetmaincoords{80}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{50} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}
                    end{document}


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    foreach Angle in {5,15,...,355}
                    {tdplotsetmaincoords{70+cos(Angle)}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{40+15*sin(2*Angle)} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}}
                    end{document}


                    enter image description here






                    share|improve this answer
























                    • Is this a cone in a sphere?

                      – minhthien_2016
                      16 hours ago













                    • @minhthien_2016 It could be one.

                      – marmot
                      13 hours ago














                    5












                    5








                    5







                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.





                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.




                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    tdplotsetmaincoords{80}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{50} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}
                    end{document}


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    foreach Angle in {5,15,...,355}
                    {tdplotsetmaincoords{70+cos(Angle)}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{40+15*sin(2*Angle)} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}}
                    end{document}


                    enter image description here






                    share|improve this answer













                    This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.





                    1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                    2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                    3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.




                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    tdplotsetmaincoords{80}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{50} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}
                    end{document}


                    enter image description here



                    The following animation shows that you can dial view and latitude as you wish.



                    documentclass[tikz,border=3.14mm]{standalone}
                    usepackage{tikz-3dplot}
                    usetikzlibrary{3d,backgrounds,quotes,angles}
                    begin{document}
                    foreach Angle in {5,15,...,355}
                    {tdplotsetmaincoords{70+cos(Angle)}{00}
                    begin{tikzpicture}[tdplot_main_coords]
                    pgfmathsetmacro{R}{2} % radius
                    pgfmathsetmacro{myang}{40+15*sin(2*Angle)} % latitude angle of the red circle
                    coordinate (O) at (0,0,0);
                    shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                    (O) circle [radius = R*1cm];
                    begin{scope}[canvas is xy plane at z={R*sin(myang)},transform shape]
                    % angVis from https://tex.stackexchange.com/a/49589/121799
                    pgfmathsetmacroangVis{atan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))}
                    begin{scope}[on background layer]
                    draw[red,dashed] (angVis:{R*cos(myang)}) arc (angVis:180-angVis:{R*cos(myang)});
                    end{scope}
                    draw[red] (180-angVis:{R*cos(myang)}) arc (180-angVis:360+angVis:{R*cos(myang)});
                    path (0:{R*cos(myang)}) coordinate (R)
                    (180:{R*cos(myang)}) coordinate (L);
                    end{scope}
                    begin{scope}[on background layer]
                    draw[dashed] (L) -- (O) node[midway,below] {$L$} -- (R);
                    fill (O) circle[radius=1pt] node[below] {$O$};
                    pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                    {angle=R--O--L};
                    end{scope}
                    end{tikzpicture}}
                    end{document}


                    enter image description here







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered yesterday









                    marmotmarmot

                    116k5149280




                    116k5149280













                    • Is this a cone in a sphere?

                      – minhthien_2016
                      16 hours ago













                    • @minhthien_2016 It could be one.

                      – marmot
                      13 hours ago



















                    • Is this a cone in a sphere?

                      – minhthien_2016
                      16 hours ago













                    • @minhthien_2016 It could be one.

                      – marmot
                      13 hours ago

















                    Is this a cone in a sphere?

                    – minhthien_2016
                    16 hours ago







                    Is this a cone in a sphere?

                    – minhthien_2016
                    16 hours ago















                    @minhthien_2016 It could be one.

                    – marmot
                    13 hours ago





                    @minhthien_2016 It could be one.

                    – marmot
                    13 hours ago










                    medihde is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    medihde is a new contributor. Be nice, and check out our Code of Conduct.













                    medihde is a new contributor. Be nice, and check out our Code of Conduct.












                    medihde is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                    He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                    Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029