Can I rely on these GitHub repository files? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraWhich file encryption algorithm is used by Synology's Cloud Sync feature?GitHub pages and same originDoes GitHub have an endpoint for reading a users GPG keys?API credentials visible when creating Github pages website?Why host third party libs instead of relying on CDN, Nuget, GitHub?Making an API repository private vs publicHow does Github preserve versioning integrity?How does Github authentication work (command line, api)?Is it a good idea to upload your gnupg files to github?How could malicious code changes in a GitHub pull request be masked by an attacker?
How to keep bees out of canned beverages?
What *exactly* is electrical current, voltage, and resistance?
Raising a bilingual kid. When should we introduce the majority language?
Does using the Inspiration rules for character defects encourage My Guy Syndrome?
Why does Java have support for time zone offsets with seconds precision?
What is the ongoing value of the Kanban board to the developers as opposed to management
How would you suggest I follow up with coworkers about our deadline that's today?
Is a self contained air-bullet cartridge feasible?
What is a 'Key' in computer science?
What is the term for extremely loose Latin word order?
TV series episode where humans nuke aliens before decrypting their message that states they come in peace
What is /etc/mtab in Linux?
Was Objective-C really a hindrance to Apple software development?
Why aren't road bicycle wheels tiny?
What is the definining line between a helicopter and a drone a person can ride in?
Getting AggregateResult variables from Execute Anonymous Window
/bin/ls sorts differently than just ls
Why I cannot instantiate a class whose constructor is private in a friend class?
Retract an already submitted Recommendation Letter (written for an undergrad student)
Does every subgroup of an abelian group have to be abelian?
Why does the Cisco show run command not show the full version, while the show version command does?
Why isn't everyone flabbergasted about Bran's "gift"?
When does Bran Stark remember Jamie pushing him?
Why is arima in R one time step off?
Can I rely on these GitHub repository files?
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraWhich file encryption algorithm is used by Synology's Cloud Sync feature?GitHub pages and same originDoes GitHub have an endpoint for reading a users GPG keys?API credentials visible when creating Github pages website?Why host third party libs instead of relying on CDN, Nuget, GitHub?Making an API repository private vs publicHow does Github preserve versioning integrity?How does Github authentication work (command line, api)?Is it a good idea to upload your gnupg files to github?How could malicious code changes in a GitHub pull request be masked by an attacker?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
I recently found the GitHub repository https://github.com/userEn1gm4/HLuna, but after I cloned it I noted that the comparison between the file compiled (using g++) from source, HLuna.cxx
, and the binary included in the repository (HLuna
) is different: differ: byte 25, line 1
. Is the provided binary file secure?
I've already analyzed that in VirusTotal without any issues, but I don't have the expertise to decompile and read the output, and I've previously executed the binary provided without thinking about the risks.
reverse-engineering c++ github
add a comment |
I recently found the GitHub repository https://github.com/userEn1gm4/HLuna, but after I cloned it I noted that the comparison between the file compiled (using g++) from source, HLuna.cxx
, and the binary included in the repository (HLuna
) is different: differ: byte 25, line 1
. Is the provided binary file secure?
I've already analyzed that in VirusTotal without any issues, but I don't have the expertise to decompile and read the output, and I've previously executed the binary provided without thinking about the risks.
reverse-engineering c++ github
3
If you're able to compile from source, then just use your computer version.
– Daisetsu
Mar 25 at 5:05
18
It takes lots of effort for builds to be reproducible (deterministic) due to nature of legacy tools (because no one cared about that in past). Debian is trying to be deterministic since 2014, still not done :)
– PTwr
Mar 25 at 8:27
1
There is a relevant post (full disclosure: mine) on OpenSource.SE with several helpful links about deterministic and non-deterministic builds: Is there any way to assert that source code corresponds to compiled code?
– apsillers
Mar 25 at 13:09
1
How do you know you can trust the source code in the repo? Do you audit every single line of code? (the 175 line source code file you linked to is small enough that you can audit it, but if it were 10,000 or 100,000 lines of code, is the source code any safer than the published binaries?)
– Johnny
Mar 25 at 21:35
add a comment |
I recently found the GitHub repository https://github.com/userEn1gm4/HLuna, but after I cloned it I noted that the comparison between the file compiled (using g++) from source, HLuna.cxx
, and the binary included in the repository (HLuna
) is different: differ: byte 25, line 1
. Is the provided binary file secure?
I've already analyzed that in VirusTotal without any issues, but I don't have the expertise to decompile and read the output, and I've previously executed the binary provided without thinking about the risks.
reverse-engineering c++ github
I recently found the GitHub repository https://github.com/userEn1gm4/HLuna, but after I cloned it I noted that the comparison between the file compiled (using g++) from source, HLuna.cxx
, and the binary included in the repository (HLuna
) is different: differ: byte 25, line 1
. Is the provided binary file secure?
I've already analyzed that in VirusTotal without any issues, but I don't have the expertise to decompile and read the output, and I've previously executed the binary provided without thinking about the risks.
reverse-engineering c++ github
reverse-engineering c++ github
edited Mar 25 at 7:19
Peter Mortensen
71249
71249
asked Mar 24 at 23:14
mcruz2401mcruz2401
11115
11115
3
If you're able to compile from source, then just use your computer version.
– Daisetsu
Mar 25 at 5:05
18
It takes lots of effort for builds to be reproducible (deterministic) due to nature of legacy tools (because no one cared about that in past). Debian is trying to be deterministic since 2014, still not done :)
– PTwr
Mar 25 at 8:27
1
There is a relevant post (full disclosure: mine) on OpenSource.SE with several helpful links about deterministic and non-deterministic builds: Is there any way to assert that source code corresponds to compiled code?
– apsillers
Mar 25 at 13:09
1
How do you know you can trust the source code in the repo? Do you audit every single line of code? (the 175 line source code file you linked to is small enough that you can audit it, but if it were 10,000 or 100,000 lines of code, is the source code any safer than the published binaries?)
– Johnny
Mar 25 at 21:35
add a comment |
3
If you're able to compile from source, then just use your computer version.
– Daisetsu
Mar 25 at 5:05
18
It takes lots of effort for builds to be reproducible (deterministic) due to nature of legacy tools (because no one cared about that in past). Debian is trying to be deterministic since 2014, still not done :)
– PTwr
Mar 25 at 8:27
1
There is a relevant post (full disclosure: mine) on OpenSource.SE with several helpful links about deterministic and non-deterministic builds: Is there any way to assert that source code corresponds to compiled code?
– apsillers
Mar 25 at 13:09
1
How do you know you can trust the source code in the repo? Do you audit every single line of code? (the 175 line source code file you linked to is small enough that you can audit it, but if it were 10,000 or 100,000 lines of code, is the source code any safer than the published binaries?)
– Johnny
Mar 25 at 21:35
3
3
If you're able to compile from source, then just use your computer version.
– Daisetsu
Mar 25 at 5:05
If you're able to compile from source, then just use your computer version.
– Daisetsu
Mar 25 at 5:05
18
18
It takes lots of effort for builds to be reproducible (deterministic) due to nature of legacy tools (because no one cared about that in past). Debian is trying to be deterministic since 2014, still not done :)
– PTwr
Mar 25 at 8:27
It takes lots of effort for builds to be reproducible (deterministic) due to nature of legacy tools (because no one cared about that in past). Debian is trying to be deterministic since 2014, still not done :)
– PTwr
Mar 25 at 8:27
1
1
There is a relevant post (full disclosure: mine) on OpenSource.SE with several helpful links about deterministic and non-deterministic builds: Is there any way to assert that source code corresponds to compiled code?
– apsillers
Mar 25 at 13:09
There is a relevant post (full disclosure: mine) on OpenSource.SE with several helpful links about deterministic and non-deterministic builds: Is there any way to assert that source code corresponds to compiled code?
– apsillers
Mar 25 at 13:09
1
1
How do you know you can trust the source code in the repo? Do you audit every single line of code? (the 175 line source code file you linked to is small enough that you can audit it, but if it were 10,000 or 100,000 lines of code, is the source code any safer than the published binaries?)
– Johnny
Mar 25 at 21:35
How do you know you can trust the source code in the repo? Do you audit every single line of code? (the 175 line source code file you linked to is small enough that you can audit it, but if it were 10,000 or 100,000 lines of code, is the source code any safer than the published binaries?)
– Johnny
Mar 25 at 21:35
add a comment |
3 Answers
3
active
oldest
votes
Polynomial tells you what may happen, and how to solve it. Here I will illustrate it:
I ran both binaries through strings
and diffed them. That enough shows some completely harmless differences, in particular, the compiler used:
GCC: (Debian 6.3.0-18) 6.3.0 20170516 | GCC: (GNU) 8.2.1 20181105 (Red Hat 8.2.1-5)
> GCC: (GNU) 8.3.1 20190223 (Red Hat 8.3.1-2)
> gcc 8.2.1 20181105
Some of the private names used are also different:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSEOS4_@ | _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSERKS4_
And some sections seem to be shuffled, so the diff cannot match them exactly.
Even on the same computer, without optimisation and -O3 shows different files:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE6appendE | _ZNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEED2Ev
Even shuffling of internal data:
Diccionario creado! <
MENU <
1. Generador de Diccionarios <
0. Salir <
/*** <
* $$| |$$ |$$| <
* $$| |$$ |$$| * $$| |$$ |$$|
* $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$| * $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$|
* $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$| * $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$|
* $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$|
* $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$| * $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$|
* $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$|
* ---------------------------------------------- * ----------------------------------------------
> -------------------
> Diccionario creado!
> MENU
> 1. Generador de Diccionarios
> 0. Salir
> /***
> * $$| |$$ |$$|
This proves that differing binary files raises many false positives, and doesn't tell you anything about is safety.
In this case, I'd use the version compiled by myself because you have no way to know what version is uploaded, as the author may have forgotten to recompile before the last tweaks.
7
I don't think those are different names - what's actually happened is that when the immediately adjoining data are printable,strings
grabs slightly more text.nm
might be a better tool for extracting identifiers.
– Toby Speight
Mar 25 at 16:14
@TobySpeight good point, I shall investigate and correct.
– Davidmh
Mar 25 at 22:06
…and even a honest author might be unknowingly infected by some malware.
– spectras
Mar 26 at 3:05
2
Protip/warning: GNU Strings was at one point vulnerable to arbitrary code execution if used on a malicious file. So it may be wise to avoid running it on untrusted files, just in case.
– Kevin
Mar 26 at 7:20
@Kevin any piece of software may be vulnerable to arbitrary code execution if used on a malicious file. That doesn't mean you can't use those tools to examine them, it just mean that you need to airgap the system that runs them.
– Braiam
Mar 26 at 14:51
add a comment |
Compilation is not a directly verifiable deterministic process across compiler versions, library versions, operating systems, or a number of other different variables. The only way to verify is to perform a diff at the assembly level. There are lots of tools that can do this but you still need to put the manual work in.
35
Even that isn't going to be reliable across optimization levels.
– chrylis
Mar 25 at 5:48
44
Even if the compiled object code is 100% identical, there may still be timestamps in the executable file's metadata which cause the resulting binaries to differ even though the code is identical.
– Jörg W Mittag
Mar 25 at 7:00
2
Reproducible builds solve this problem.
– forest
Mar 25 at 8:34
This is the real answer. Build never supposed to produce the same binary on two different machines even with same OS, compiler version and configuration. It is just stated nowhere, and no one actually assumed this, at least in C++ world. I don't like the accepted answer because it is specific to the app and does not explain this.
– Croll
Mar 26 at 9:07
add a comment |
If the software is exactly the same at source level, then the question boils down to whether you can trust your compiler, system libraries and various utilities which are used during compilation. If you installed your toolchain from a trusted source and you trust your computer wasn't compromised meanwhile, then there's no reason to suspect that the binary file that you generated will be malicious, even if it differs from the "reference" build.
6
Of course, Ken Thompson may disagree.
– Jörg W Mittag
Mar 25 at 15:52
1
@JörgWMittag If you can't trust trust, who can you trust?
– apsillers
Mar 25 at 16:52
1
@apsillers trusting trust can be countered: schneier.com/blog/archives/2006/01/countering_trus.html
– Alex Vong
Mar 26 at 12:01
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "162"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fsecurity.stackexchange.com%2fquestions%2f206000%2fcan-i-rely-on-these-github-repository-files%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Polynomial tells you what may happen, and how to solve it. Here I will illustrate it:
I ran both binaries through strings
and diffed them. That enough shows some completely harmless differences, in particular, the compiler used:
GCC: (Debian 6.3.0-18) 6.3.0 20170516 | GCC: (GNU) 8.2.1 20181105 (Red Hat 8.2.1-5)
> GCC: (GNU) 8.3.1 20190223 (Red Hat 8.3.1-2)
> gcc 8.2.1 20181105
Some of the private names used are also different:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSEOS4_@ | _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSERKS4_
And some sections seem to be shuffled, so the diff cannot match them exactly.
Even on the same computer, without optimisation and -O3 shows different files:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE6appendE | _ZNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEED2Ev
Even shuffling of internal data:
Diccionario creado! <
MENU <
1. Generador de Diccionarios <
0. Salir <
/*** <
* $$| |$$ |$$| <
* $$| |$$ |$$| * $$| |$$ |$$|
* $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$| * $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$|
* $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$| * $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$|
* $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$|
* $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$| * $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$|
* $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$|
* ---------------------------------------------- * ----------------------------------------------
> -------------------
> Diccionario creado!
> MENU
> 1. Generador de Diccionarios
> 0. Salir
> /***
> * $$| |$$ |$$|
This proves that differing binary files raises many false positives, and doesn't tell you anything about is safety.
In this case, I'd use the version compiled by myself because you have no way to know what version is uploaded, as the author may have forgotten to recompile before the last tweaks.
7
I don't think those are different names - what's actually happened is that when the immediately adjoining data are printable,strings
grabs slightly more text.nm
might be a better tool for extracting identifiers.
– Toby Speight
Mar 25 at 16:14
@TobySpeight good point, I shall investigate and correct.
– Davidmh
Mar 25 at 22:06
…and even a honest author might be unknowingly infected by some malware.
– spectras
Mar 26 at 3:05
2
Protip/warning: GNU Strings was at one point vulnerable to arbitrary code execution if used on a malicious file. So it may be wise to avoid running it on untrusted files, just in case.
– Kevin
Mar 26 at 7:20
@Kevin any piece of software may be vulnerable to arbitrary code execution if used on a malicious file. That doesn't mean you can't use those tools to examine them, it just mean that you need to airgap the system that runs them.
– Braiam
Mar 26 at 14:51
add a comment |
Polynomial tells you what may happen, and how to solve it. Here I will illustrate it:
I ran both binaries through strings
and diffed them. That enough shows some completely harmless differences, in particular, the compiler used:
GCC: (Debian 6.3.0-18) 6.3.0 20170516 | GCC: (GNU) 8.2.1 20181105 (Red Hat 8.2.1-5)
> GCC: (GNU) 8.3.1 20190223 (Red Hat 8.3.1-2)
> gcc 8.2.1 20181105
Some of the private names used are also different:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSEOS4_@ | _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSERKS4_
And some sections seem to be shuffled, so the diff cannot match them exactly.
Even on the same computer, without optimisation and -O3 shows different files:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE6appendE | _ZNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEED2Ev
Even shuffling of internal data:
Diccionario creado! <
MENU <
1. Generador de Diccionarios <
0. Salir <
/*** <
* $$| |$$ |$$| <
* $$| |$$ |$$| * $$| |$$ |$$|
* $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$| * $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$|
* $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$| * $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$|
* $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$|
* $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$| * $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$|
* $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$|
* ---------------------------------------------- * ----------------------------------------------
> -------------------
> Diccionario creado!
> MENU
> 1. Generador de Diccionarios
> 0. Salir
> /***
> * $$| |$$ |$$|
This proves that differing binary files raises many false positives, and doesn't tell you anything about is safety.
In this case, I'd use the version compiled by myself because you have no way to know what version is uploaded, as the author may have forgotten to recompile before the last tweaks.
7
I don't think those are different names - what's actually happened is that when the immediately adjoining data are printable,strings
grabs slightly more text.nm
might be a better tool for extracting identifiers.
– Toby Speight
Mar 25 at 16:14
@TobySpeight good point, I shall investigate and correct.
– Davidmh
Mar 25 at 22:06
…and even a honest author might be unknowingly infected by some malware.
– spectras
Mar 26 at 3:05
2
Protip/warning: GNU Strings was at one point vulnerable to arbitrary code execution if used on a malicious file. So it may be wise to avoid running it on untrusted files, just in case.
– Kevin
Mar 26 at 7:20
@Kevin any piece of software may be vulnerable to arbitrary code execution if used on a malicious file. That doesn't mean you can't use those tools to examine them, it just mean that you need to airgap the system that runs them.
– Braiam
Mar 26 at 14:51
add a comment |
Polynomial tells you what may happen, and how to solve it. Here I will illustrate it:
I ran both binaries through strings
and diffed them. That enough shows some completely harmless differences, in particular, the compiler used:
GCC: (Debian 6.3.0-18) 6.3.0 20170516 | GCC: (GNU) 8.2.1 20181105 (Red Hat 8.2.1-5)
> GCC: (GNU) 8.3.1 20190223 (Red Hat 8.3.1-2)
> gcc 8.2.1 20181105
Some of the private names used are also different:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSEOS4_@ | _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSERKS4_
And some sections seem to be shuffled, so the diff cannot match them exactly.
Even on the same computer, without optimisation and -O3 shows different files:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE6appendE | _ZNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEED2Ev
Even shuffling of internal data:
Diccionario creado! <
MENU <
1. Generador de Diccionarios <
0. Salir <
/*** <
* $$| |$$ |$$| <
* $$| |$$ |$$| * $$| |$$ |$$|
* $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$| * $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$|
* $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$| * $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$|
* $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$|
* $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$| * $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$|
* $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$|
* ---------------------------------------------- * ----------------------------------------------
> -------------------
> Diccionario creado!
> MENU
> 1. Generador de Diccionarios
> 0. Salir
> /***
> * $$| |$$ |$$|
This proves that differing binary files raises many false positives, and doesn't tell you anything about is safety.
In this case, I'd use the version compiled by myself because you have no way to know what version is uploaded, as the author may have forgotten to recompile before the last tweaks.
Polynomial tells you what may happen, and how to solve it. Here I will illustrate it:
I ran both binaries through strings
and diffed them. That enough shows some completely harmless differences, in particular, the compiler used:
GCC: (Debian 6.3.0-18) 6.3.0 20170516 | GCC: (GNU) 8.2.1 20181105 (Red Hat 8.2.1-5)
> GCC: (GNU) 8.3.1 20190223 (Red Hat 8.3.1-2)
> gcc 8.2.1 20181105
Some of the private names used are also different:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSEOS4_@ | _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEaSERKS4_
And some sections seem to be shuffled, so the diff cannot match them exactly.
Even on the same computer, without optimisation and -O3 shows different files:
_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE6appendE | _ZNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEED2Ev
Even shuffling of internal data:
Diccionario creado! <
MENU <
1. Generador de Diccionarios <
0. Salir <
/*** <
* $$| |$$ |$$| <
* $$| |$$ |$$| * $$| |$$ |$$|
* $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$| * $$| |$$ |$$| $$| |$$ |$$$$$$| |$$$$$$|
* $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$| * $$$$$$$$ |$$| $$| |$$ |$$ __ $$| ____$$|
* $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$| $$| |$$ |$$| |$$| $$$$$$$|
* $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$| * $$| |$$ |$$|___ $$|_|$$ |$$| |$$| $$___$$|
* $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$| * $$| |$$ |$$$$$$$| $$$$$ |$$| |$$| $$$$$$$|
* ---------------------------------------------- * ----------------------------------------------
> -------------------
> Diccionario creado!
> MENU
> 1. Generador de Diccionarios
> 0. Salir
> /***
> * $$| |$$ |$$|
This proves that differing binary files raises many false positives, and doesn't tell you anything about is safety.
In this case, I'd use the version compiled by myself because you have no way to know what version is uploaded, as the author may have forgotten to recompile before the last tweaks.
answered Mar 25 at 8:46
DavidmhDavidmh
33615
33615
7
I don't think those are different names - what's actually happened is that when the immediately adjoining data are printable,strings
grabs slightly more text.nm
might be a better tool for extracting identifiers.
– Toby Speight
Mar 25 at 16:14
@TobySpeight good point, I shall investigate and correct.
– Davidmh
Mar 25 at 22:06
…and even a honest author might be unknowingly infected by some malware.
– spectras
Mar 26 at 3:05
2
Protip/warning: GNU Strings was at one point vulnerable to arbitrary code execution if used on a malicious file. So it may be wise to avoid running it on untrusted files, just in case.
– Kevin
Mar 26 at 7:20
@Kevin any piece of software may be vulnerable to arbitrary code execution if used on a malicious file. That doesn't mean you can't use those tools to examine them, it just mean that you need to airgap the system that runs them.
– Braiam
Mar 26 at 14:51
add a comment |
7
I don't think those are different names - what's actually happened is that when the immediately adjoining data are printable,strings
grabs slightly more text.nm
might be a better tool for extracting identifiers.
– Toby Speight
Mar 25 at 16:14
@TobySpeight good point, I shall investigate and correct.
– Davidmh
Mar 25 at 22:06
…and even a honest author might be unknowingly infected by some malware.
– spectras
Mar 26 at 3:05
2
Protip/warning: GNU Strings was at one point vulnerable to arbitrary code execution if used on a malicious file. So it may be wise to avoid running it on untrusted files, just in case.
– Kevin
Mar 26 at 7:20
@Kevin any piece of software may be vulnerable to arbitrary code execution if used on a malicious file. That doesn't mean you can't use those tools to examine them, it just mean that you need to airgap the system that runs them.
– Braiam
Mar 26 at 14:51
7
7
I don't think those are different names - what's actually happened is that when the immediately adjoining data are printable,
strings
grabs slightly more text. nm
might be a better tool for extracting identifiers.– Toby Speight
Mar 25 at 16:14
I don't think those are different names - what's actually happened is that when the immediately adjoining data are printable,
strings
grabs slightly more text. nm
might be a better tool for extracting identifiers.– Toby Speight
Mar 25 at 16:14
@TobySpeight good point, I shall investigate and correct.
– Davidmh
Mar 25 at 22:06
@TobySpeight good point, I shall investigate and correct.
– Davidmh
Mar 25 at 22:06
…and even a honest author might be unknowingly infected by some malware.
– spectras
Mar 26 at 3:05
…and even a honest author might be unknowingly infected by some malware.
– spectras
Mar 26 at 3:05
2
2
Protip/warning: GNU Strings was at one point vulnerable to arbitrary code execution if used on a malicious file. So it may be wise to avoid running it on untrusted files, just in case.
– Kevin
Mar 26 at 7:20
Protip/warning: GNU Strings was at one point vulnerable to arbitrary code execution if used on a malicious file. So it may be wise to avoid running it on untrusted files, just in case.
– Kevin
Mar 26 at 7:20
@Kevin any piece of software may be vulnerable to arbitrary code execution if used on a malicious file. That doesn't mean you can't use those tools to examine them, it just mean that you need to airgap the system that runs them.
– Braiam
Mar 26 at 14:51
@Kevin any piece of software may be vulnerable to arbitrary code execution if used on a malicious file. That doesn't mean you can't use those tools to examine them, it just mean that you need to airgap the system that runs them.
– Braiam
Mar 26 at 14:51
add a comment |
Compilation is not a directly verifiable deterministic process across compiler versions, library versions, operating systems, or a number of other different variables. The only way to verify is to perform a diff at the assembly level. There are lots of tools that can do this but you still need to put the manual work in.
35
Even that isn't going to be reliable across optimization levels.
– chrylis
Mar 25 at 5:48
44
Even if the compiled object code is 100% identical, there may still be timestamps in the executable file's metadata which cause the resulting binaries to differ even though the code is identical.
– Jörg W Mittag
Mar 25 at 7:00
2
Reproducible builds solve this problem.
– forest
Mar 25 at 8:34
This is the real answer. Build never supposed to produce the same binary on two different machines even with same OS, compiler version and configuration. It is just stated nowhere, and no one actually assumed this, at least in C++ world. I don't like the accepted answer because it is specific to the app and does not explain this.
– Croll
Mar 26 at 9:07
add a comment |
Compilation is not a directly verifiable deterministic process across compiler versions, library versions, operating systems, or a number of other different variables. The only way to verify is to perform a diff at the assembly level. There are lots of tools that can do this but you still need to put the manual work in.
35
Even that isn't going to be reliable across optimization levels.
– chrylis
Mar 25 at 5:48
44
Even if the compiled object code is 100% identical, there may still be timestamps in the executable file's metadata which cause the resulting binaries to differ even though the code is identical.
– Jörg W Mittag
Mar 25 at 7:00
2
Reproducible builds solve this problem.
– forest
Mar 25 at 8:34
This is the real answer. Build never supposed to produce the same binary on two different machines even with same OS, compiler version and configuration. It is just stated nowhere, and no one actually assumed this, at least in C++ world. I don't like the accepted answer because it is specific to the app and does not explain this.
– Croll
Mar 26 at 9:07
add a comment |
Compilation is not a directly verifiable deterministic process across compiler versions, library versions, operating systems, or a number of other different variables. The only way to verify is to perform a diff at the assembly level. There are lots of tools that can do this but you still need to put the manual work in.
Compilation is not a directly verifiable deterministic process across compiler versions, library versions, operating systems, or a number of other different variables. The only way to verify is to perform a diff at the assembly level. There are lots of tools that can do this but you still need to put the manual work in.
answered Mar 24 at 23:20
PolynomialPolynomial
102k36249342
102k36249342
35
Even that isn't going to be reliable across optimization levels.
– chrylis
Mar 25 at 5:48
44
Even if the compiled object code is 100% identical, there may still be timestamps in the executable file's metadata which cause the resulting binaries to differ even though the code is identical.
– Jörg W Mittag
Mar 25 at 7:00
2
Reproducible builds solve this problem.
– forest
Mar 25 at 8:34
This is the real answer. Build never supposed to produce the same binary on two different machines even with same OS, compiler version and configuration. It is just stated nowhere, and no one actually assumed this, at least in C++ world. I don't like the accepted answer because it is specific to the app and does not explain this.
– Croll
Mar 26 at 9:07
add a comment |
35
Even that isn't going to be reliable across optimization levels.
– chrylis
Mar 25 at 5:48
44
Even if the compiled object code is 100% identical, there may still be timestamps in the executable file's metadata which cause the resulting binaries to differ even though the code is identical.
– Jörg W Mittag
Mar 25 at 7:00
2
Reproducible builds solve this problem.
– forest
Mar 25 at 8:34
This is the real answer. Build never supposed to produce the same binary on two different machines even with same OS, compiler version and configuration. It is just stated nowhere, and no one actually assumed this, at least in C++ world. I don't like the accepted answer because it is specific to the app and does not explain this.
– Croll
Mar 26 at 9:07
35
35
Even that isn't going to be reliable across optimization levels.
– chrylis
Mar 25 at 5:48
Even that isn't going to be reliable across optimization levels.
– chrylis
Mar 25 at 5:48
44
44
Even if the compiled object code is 100% identical, there may still be timestamps in the executable file's metadata which cause the resulting binaries to differ even though the code is identical.
– Jörg W Mittag
Mar 25 at 7:00
Even if the compiled object code is 100% identical, there may still be timestamps in the executable file's metadata which cause the resulting binaries to differ even though the code is identical.
– Jörg W Mittag
Mar 25 at 7:00
2
2
Reproducible builds solve this problem.
– forest
Mar 25 at 8:34
Reproducible builds solve this problem.
– forest
Mar 25 at 8:34
This is the real answer. Build never supposed to produce the same binary on two different machines even with same OS, compiler version and configuration. It is just stated nowhere, and no one actually assumed this, at least in C++ world. I don't like the accepted answer because it is specific to the app and does not explain this.
– Croll
Mar 26 at 9:07
This is the real answer. Build never supposed to produce the same binary on two different machines even with same OS, compiler version and configuration. It is just stated nowhere, and no one actually assumed this, at least in C++ world. I don't like the accepted answer because it is specific to the app and does not explain this.
– Croll
Mar 26 at 9:07
add a comment |
If the software is exactly the same at source level, then the question boils down to whether you can trust your compiler, system libraries and various utilities which are used during compilation. If you installed your toolchain from a trusted source and you trust your computer wasn't compromised meanwhile, then there's no reason to suspect that the binary file that you generated will be malicious, even if it differs from the "reference" build.
6
Of course, Ken Thompson may disagree.
– Jörg W Mittag
Mar 25 at 15:52
1
@JörgWMittag If you can't trust trust, who can you trust?
– apsillers
Mar 25 at 16:52
1
@apsillers trusting trust can be countered: schneier.com/blog/archives/2006/01/countering_trus.html
– Alex Vong
Mar 26 at 12:01
add a comment |
If the software is exactly the same at source level, then the question boils down to whether you can trust your compiler, system libraries and various utilities which are used during compilation. If you installed your toolchain from a trusted source and you trust your computer wasn't compromised meanwhile, then there's no reason to suspect that the binary file that you generated will be malicious, even if it differs from the "reference" build.
6
Of course, Ken Thompson may disagree.
– Jörg W Mittag
Mar 25 at 15:52
1
@JörgWMittag If you can't trust trust, who can you trust?
– apsillers
Mar 25 at 16:52
1
@apsillers trusting trust can be countered: schneier.com/blog/archives/2006/01/countering_trus.html
– Alex Vong
Mar 26 at 12:01
add a comment |
If the software is exactly the same at source level, then the question boils down to whether you can trust your compiler, system libraries and various utilities which are used during compilation. If you installed your toolchain from a trusted source and you trust your computer wasn't compromised meanwhile, then there's no reason to suspect that the binary file that you generated will be malicious, even if it differs from the "reference" build.
If the software is exactly the same at source level, then the question boils down to whether you can trust your compiler, system libraries and various utilities which are used during compilation. If you installed your toolchain from a trusted source and you trust your computer wasn't compromised meanwhile, then there's no reason to suspect that the binary file that you generated will be malicious, even if it differs from the "reference" build.
answered Mar 25 at 13:27
Dmitry GrigoryevDmitry Grigoryev
7,6802244
7,6802244
6
Of course, Ken Thompson may disagree.
– Jörg W Mittag
Mar 25 at 15:52
1
@JörgWMittag If you can't trust trust, who can you trust?
– apsillers
Mar 25 at 16:52
1
@apsillers trusting trust can be countered: schneier.com/blog/archives/2006/01/countering_trus.html
– Alex Vong
Mar 26 at 12:01
add a comment |
6
Of course, Ken Thompson may disagree.
– Jörg W Mittag
Mar 25 at 15:52
1
@JörgWMittag If you can't trust trust, who can you trust?
– apsillers
Mar 25 at 16:52
1
@apsillers trusting trust can be countered: schneier.com/blog/archives/2006/01/countering_trus.html
– Alex Vong
Mar 26 at 12:01
6
6
Of course, Ken Thompson may disagree.
– Jörg W Mittag
Mar 25 at 15:52
Of course, Ken Thompson may disagree.
– Jörg W Mittag
Mar 25 at 15:52
1
1
@JörgWMittag If you can't trust trust, who can you trust?
– apsillers
Mar 25 at 16:52
@JörgWMittag If you can't trust trust, who can you trust?
– apsillers
Mar 25 at 16:52
1
1
@apsillers trusting trust can be countered: schneier.com/blog/archives/2006/01/countering_trus.html
– Alex Vong
Mar 26 at 12:01
@apsillers trusting trust can be countered: schneier.com/blog/archives/2006/01/countering_trus.html
– Alex Vong
Mar 26 at 12:01
add a comment |
Thanks for contributing an answer to Information Security Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fsecurity.stackexchange.com%2fquestions%2f206000%2fcan-i-rely-on-these-github-repository-files%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
If you're able to compile from source, then just use your computer version.
– Daisetsu
Mar 25 at 5:05
18
It takes lots of effort for builds to be reproducible (deterministic) due to nature of legacy tools (because no one cared about that in past). Debian is trying to be deterministic since 2014, still not done :)
– PTwr
Mar 25 at 8:27
1
There is a relevant post (full disclosure: mine) on OpenSource.SE with several helpful links about deterministic and non-deterministic builds: Is there any way to assert that source code corresponds to compiled code?
– apsillers
Mar 25 at 13:09
1
How do you know you can trust the source code in the repo? Do you audit every single line of code? (the 175 line source code file you linked to is small enough that you can audit it, but if it were 10,000 or 100,000 lines of code, is the source code any safer than the published binaries?)
– Johnny
Mar 25 at 21:35