Partial sums of primes












4












$begingroup$


$2+3+5+7+11+13...$ is clearly the sum of the primes.



Now I consider partial sums such:



$2+3+5+7+11=28$ which is divisible by $7$



My question is:



are there infinitely many partial sums such that:



$p_1+p_2+p_3+...+p_{k}+p_{k+1}=m*p_{k}?$ with $m$ some positive integer? With Pari/gp apparently up to 10^10 there are only two examples $7$=$p_k$ and $8263=p_k$. Heuristically do you think that infinitely many such partial sums should exist? Note: 7 and 8263 are both primes belonging to primes on the left side of the triangle formed by listing successively the prime numbers in a triangular grid. See https://oeis.org/A078721
Note in both cases $2+3+5+7=17$ is prime and $2+3+5+...+p_{1036}=3974497$ is prime.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    Strongly related: mathoverflow.net/questions/120511/…. Also crossposted on MSE: math.stackexchange.com/questions/3161810/23571113 (please don't do this anymore).
    $endgroup$
    – Alex M.
    20 hours ago












  • $begingroup$
    @Alex M.@Mark Fischler the heuristic is the same for primes p(n) dividing the sum of primes up to p(n+1) and for primes p(n) dividing the sum of primes up to p(n). But it seems that in the first case primes are rarer. Why?
    $endgroup$
    – homunculus
    11 hours ago












  • $begingroup$
    The second solution ($8263$) has some amazing properties : The sum of its digits, the sum of the squares of its digits and the sum of the fifth powers of its digits are prime as well as $$8^8+2^2+6^6+3^3$$
    $endgroup$
    – Peter
    9 hours ago










  • $begingroup$
    @Peter $8+2+6+3=19$. $8263+19-1=91^2$ where 91 is 19 reversed
    $endgroup$
    – homunculus
    6 hours ago










  • $begingroup$
    Possible duplicate of Why do primes dislike dividing the sum of all the preceding primes?
    $endgroup$
    – Alex M.
    3 hours ago
















4












$begingroup$


$2+3+5+7+11+13...$ is clearly the sum of the primes.



Now I consider partial sums such:



$2+3+5+7+11=28$ which is divisible by $7$



My question is:



are there infinitely many partial sums such that:



$p_1+p_2+p_3+...+p_{k}+p_{k+1}=m*p_{k}?$ with $m$ some positive integer? With Pari/gp apparently up to 10^10 there are only two examples $7$=$p_k$ and $8263=p_k$. Heuristically do you think that infinitely many such partial sums should exist? Note: 7 and 8263 are both primes belonging to primes on the left side of the triangle formed by listing successively the prime numbers in a triangular grid. See https://oeis.org/A078721
Note in both cases $2+3+5+7=17$ is prime and $2+3+5+...+p_{1036}=3974497$ is prime.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    Strongly related: mathoverflow.net/questions/120511/…. Also crossposted on MSE: math.stackexchange.com/questions/3161810/23571113 (please don't do this anymore).
    $endgroup$
    – Alex M.
    20 hours ago












  • $begingroup$
    @Alex M.@Mark Fischler the heuristic is the same for primes p(n) dividing the sum of primes up to p(n+1) and for primes p(n) dividing the sum of primes up to p(n). But it seems that in the first case primes are rarer. Why?
    $endgroup$
    – homunculus
    11 hours ago












  • $begingroup$
    The second solution ($8263$) has some amazing properties : The sum of its digits, the sum of the squares of its digits and the sum of the fifth powers of its digits are prime as well as $$8^8+2^2+6^6+3^3$$
    $endgroup$
    – Peter
    9 hours ago










  • $begingroup$
    @Peter $8+2+6+3=19$. $8263+19-1=91^2$ where 91 is 19 reversed
    $endgroup$
    – homunculus
    6 hours ago










  • $begingroup$
    Possible duplicate of Why do primes dislike dividing the sum of all the preceding primes?
    $endgroup$
    – Alex M.
    3 hours ago














4












4








4





$begingroup$


$2+3+5+7+11+13...$ is clearly the sum of the primes.



Now I consider partial sums such:



$2+3+5+7+11=28$ which is divisible by $7$



My question is:



are there infinitely many partial sums such that:



$p_1+p_2+p_3+...+p_{k}+p_{k+1}=m*p_{k}?$ with $m$ some positive integer? With Pari/gp apparently up to 10^10 there are only two examples $7$=$p_k$ and $8263=p_k$. Heuristically do you think that infinitely many such partial sums should exist? Note: 7 and 8263 are both primes belonging to primes on the left side of the triangle formed by listing successively the prime numbers in a triangular grid. See https://oeis.org/A078721
Note in both cases $2+3+5+7=17$ is prime and $2+3+5+...+p_{1036}=3974497$ is prime.










share|cite|improve this question











$endgroup$




$2+3+5+7+11+13...$ is clearly the sum of the primes.



Now I consider partial sums such:



$2+3+5+7+11=28$ which is divisible by $7$



My question is:



are there infinitely many partial sums such that:



$p_1+p_2+p_3+...+p_{k}+p_{k+1}=m*p_{k}?$ with $m$ some positive integer? With Pari/gp apparently up to 10^10 there are only two examples $7$=$p_k$ and $8263=p_k$. Heuristically do you think that infinitely many such partial sums should exist? Note: 7 and 8263 are both primes belonging to primes on the left side of the triangle formed by listing successively the prime numbers in a triangular grid. See https://oeis.org/A078721
Note in both cases $2+3+5+7=17$ is prime and $2+3+5+...+p_{1036}=3974497$ is prime.







nt.number-theory prime-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 17 mins ago







homunculus

















asked yesterday









homunculushomunculus

314




314








  • 5




    $begingroup$
    Strongly related: mathoverflow.net/questions/120511/…. Also crossposted on MSE: math.stackexchange.com/questions/3161810/23571113 (please don't do this anymore).
    $endgroup$
    – Alex M.
    20 hours ago












  • $begingroup$
    @Alex M.@Mark Fischler the heuristic is the same for primes p(n) dividing the sum of primes up to p(n+1) and for primes p(n) dividing the sum of primes up to p(n). But it seems that in the first case primes are rarer. Why?
    $endgroup$
    – homunculus
    11 hours ago












  • $begingroup$
    The second solution ($8263$) has some amazing properties : The sum of its digits, the sum of the squares of its digits and the sum of the fifth powers of its digits are prime as well as $$8^8+2^2+6^6+3^3$$
    $endgroup$
    – Peter
    9 hours ago










  • $begingroup$
    @Peter $8+2+6+3=19$. $8263+19-1=91^2$ where 91 is 19 reversed
    $endgroup$
    – homunculus
    6 hours ago










  • $begingroup$
    Possible duplicate of Why do primes dislike dividing the sum of all the preceding primes?
    $endgroup$
    – Alex M.
    3 hours ago














  • 5




    $begingroup$
    Strongly related: mathoverflow.net/questions/120511/…. Also crossposted on MSE: math.stackexchange.com/questions/3161810/23571113 (please don't do this anymore).
    $endgroup$
    – Alex M.
    20 hours ago












  • $begingroup$
    @Alex M.@Mark Fischler the heuristic is the same for primes p(n) dividing the sum of primes up to p(n+1) and for primes p(n) dividing the sum of primes up to p(n). But it seems that in the first case primes are rarer. Why?
    $endgroup$
    – homunculus
    11 hours ago












  • $begingroup$
    The second solution ($8263$) has some amazing properties : The sum of its digits, the sum of the squares of its digits and the sum of the fifth powers of its digits are prime as well as $$8^8+2^2+6^6+3^3$$
    $endgroup$
    – Peter
    9 hours ago










  • $begingroup$
    @Peter $8+2+6+3=19$. $8263+19-1=91^2$ where 91 is 19 reversed
    $endgroup$
    – homunculus
    6 hours ago










  • $begingroup$
    Possible duplicate of Why do primes dislike dividing the sum of all the preceding primes?
    $endgroup$
    – Alex M.
    3 hours ago








5




5




$begingroup$
Strongly related: mathoverflow.net/questions/120511/…. Also crossposted on MSE: math.stackexchange.com/questions/3161810/23571113 (please don't do this anymore).
$endgroup$
– Alex M.
20 hours ago






$begingroup$
Strongly related: mathoverflow.net/questions/120511/…. Also crossposted on MSE: math.stackexchange.com/questions/3161810/23571113 (please don't do this anymore).
$endgroup$
– Alex M.
20 hours ago














$begingroup$
@Alex M.@Mark Fischler the heuristic is the same for primes p(n) dividing the sum of primes up to p(n+1) and for primes p(n) dividing the sum of primes up to p(n). But it seems that in the first case primes are rarer. Why?
$endgroup$
– homunculus
11 hours ago






$begingroup$
@Alex M.@Mark Fischler the heuristic is the same for primes p(n) dividing the sum of primes up to p(n+1) and for primes p(n) dividing the sum of primes up to p(n). But it seems that in the first case primes are rarer. Why?
$endgroup$
– homunculus
11 hours ago














$begingroup$
The second solution ($8263$) has some amazing properties : The sum of its digits, the sum of the squares of its digits and the sum of the fifth powers of its digits are prime as well as $$8^8+2^2+6^6+3^3$$
$endgroup$
– Peter
9 hours ago




$begingroup$
The second solution ($8263$) has some amazing properties : The sum of its digits, the sum of the squares of its digits and the sum of the fifth powers of its digits are prime as well as $$8^8+2^2+6^6+3^3$$
$endgroup$
– Peter
9 hours ago












$begingroup$
@Peter $8+2+6+3=19$. $8263+19-1=91^2$ where 91 is 19 reversed
$endgroup$
– homunculus
6 hours ago




$begingroup$
@Peter $8+2+6+3=19$. $8263+19-1=91^2$ where 91 is 19 reversed
$endgroup$
– homunculus
6 hours ago












$begingroup$
Possible duplicate of Why do primes dislike dividing the sum of all the preceding primes?
$endgroup$
– Alex M.
3 hours ago




$begingroup$
Possible duplicate of Why do primes dislike dividing the sum of all the preceding primes?
$endgroup$
– Alex M.
3 hours ago










1 Answer
1






active

oldest

votes


















14












$begingroup$

You asked for a heuristic answer.



There is an heuristic argument that infinitely many such partial sums should exist. Consider $P(k)$, an heuristic estimate of the probability that the partial sum of the first $k+1$ primes would be divisible by $p_k$. Now $$p_k sim k log k$$ and if only random chance were involved, $$P(k) approx frac1{p_k} sim frac1{k log k}$$



In that case, the expected number of primes with the property you want would be something like
$$int_2^infty frac1{x log x},dx$$
and that integral diverges to infinity.



The reason it seems so rare is that the rate of divergence is like $log(log x)$ and while that function goes to infinity, "nobody ever sees it do so."



On the other hand, proving that there an infinite number of such values of $k$ (in the same sense that Euclid's argument proves there is no last prime) is probably quite difficult. And if the conjecture that there are an infinite number of such values of $k$ turned out to be false, proving that some particular $k$ is the last one with this property would seem to be even harder.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Note this answer is essentially the same as David Speyer's in the question linked to in the comment by @Alex M. above.
    $endgroup$
    – Kimball
    19 hours ago






  • 1




    $begingroup$
    "nobody ever sees it do so." - you made my day!
    $endgroup$
    – Wolfgang
    9 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326315%2fpartial-sums-of-primes%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









14












$begingroup$

You asked for a heuristic answer.



There is an heuristic argument that infinitely many such partial sums should exist. Consider $P(k)$, an heuristic estimate of the probability that the partial sum of the first $k+1$ primes would be divisible by $p_k$. Now $$p_k sim k log k$$ and if only random chance were involved, $$P(k) approx frac1{p_k} sim frac1{k log k}$$



In that case, the expected number of primes with the property you want would be something like
$$int_2^infty frac1{x log x},dx$$
and that integral diverges to infinity.



The reason it seems so rare is that the rate of divergence is like $log(log x)$ and while that function goes to infinity, "nobody ever sees it do so."



On the other hand, proving that there an infinite number of such values of $k$ (in the same sense that Euclid's argument proves there is no last prime) is probably quite difficult. And if the conjecture that there are an infinite number of such values of $k$ turned out to be false, proving that some particular $k$ is the last one with this property would seem to be even harder.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Note this answer is essentially the same as David Speyer's in the question linked to in the comment by @Alex M. above.
    $endgroup$
    – Kimball
    19 hours ago






  • 1




    $begingroup$
    "nobody ever sees it do so." - you made my day!
    $endgroup$
    – Wolfgang
    9 hours ago
















14












$begingroup$

You asked for a heuristic answer.



There is an heuristic argument that infinitely many such partial sums should exist. Consider $P(k)$, an heuristic estimate of the probability that the partial sum of the first $k+1$ primes would be divisible by $p_k$. Now $$p_k sim k log k$$ and if only random chance were involved, $$P(k) approx frac1{p_k} sim frac1{k log k}$$



In that case, the expected number of primes with the property you want would be something like
$$int_2^infty frac1{x log x},dx$$
and that integral diverges to infinity.



The reason it seems so rare is that the rate of divergence is like $log(log x)$ and while that function goes to infinity, "nobody ever sees it do so."



On the other hand, proving that there an infinite number of such values of $k$ (in the same sense that Euclid's argument proves there is no last prime) is probably quite difficult. And if the conjecture that there are an infinite number of such values of $k$ turned out to be false, proving that some particular $k$ is the last one with this property would seem to be even harder.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Note this answer is essentially the same as David Speyer's in the question linked to in the comment by @Alex M. above.
    $endgroup$
    – Kimball
    19 hours ago






  • 1




    $begingroup$
    "nobody ever sees it do so." - you made my day!
    $endgroup$
    – Wolfgang
    9 hours ago














14












14








14





$begingroup$

You asked for a heuristic answer.



There is an heuristic argument that infinitely many such partial sums should exist. Consider $P(k)$, an heuristic estimate of the probability that the partial sum of the first $k+1$ primes would be divisible by $p_k$. Now $$p_k sim k log k$$ and if only random chance were involved, $$P(k) approx frac1{p_k} sim frac1{k log k}$$



In that case, the expected number of primes with the property you want would be something like
$$int_2^infty frac1{x log x},dx$$
and that integral diverges to infinity.



The reason it seems so rare is that the rate of divergence is like $log(log x)$ and while that function goes to infinity, "nobody ever sees it do so."



On the other hand, proving that there an infinite number of such values of $k$ (in the same sense that Euclid's argument proves there is no last prime) is probably quite difficult. And if the conjecture that there are an infinite number of such values of $k$ turned out to be false, proving that some particular $k$ is the last one with this property would seem to be even harder.






share|cite|improve this answer











$endgroup$



You asked for a heuristic answer.



There is an heuristic argument that infinitely many such partial sums should exist. Consider $P(k)$, an heuristic estimate of the probability that the partial sum of the first $k+1$ primes would be divisible by $p_k$. Now $$p_k sim k log k$$ and if only random chance were involved, $$P(k) approx frac1{p_k} sim frac1{k log k}$$



In that case, the expected number of primes with the property you want would be something like
$$int_2^infty frac1{x log x},dx$$
and that integral diverges to infinity.



The reason it seems so rare is that the rate of divergence is like $log(log x)$ and while that function goes to infinity, "nobody ever sees it do so."



On the other hand, proving that there an infinite number of such values of $k$ (in the same sense that Euclid's argument proves there is no last prime) is probably quite difficult. And if the conjecture that there are an infinite number of such values of $k$ turned out to be false, proving that some particular $k$ is the last one with this property would seem to be even harder.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 19 hours ago









Peter Taylor

1536




1536










answered yesterday









Mark FischlerMark Fischler

920313




920313








  • 1




    $begingroup$
    Note this answer is essentially the same as David Speyer's in the question linked to in the comment by @Alex M. above.
    $endgroup$
    – Kimball
    19 hours ago






  • 1




    $begingroup$
    "nobody ever sees it do so." - you made my day!
    $endgroup$
    – Wolfgang
    9 hours ago














  • 1




    $begingroup$
    Note this answer is essentially the same as David Speyer's in the question linked to in the comment by @Alex M. above.
    $endgroup$
    – Kimball
    19 hours ago






  • 1




    $begingroup$
    "nobody ever sees it do so." - you made my day!
    $endgroup$
    – Wolfgang
    9 hours ago








1




1




$begingroup$
Note this answer is essentially the same as David Speyer's in the question linked to in the comment by @Alex M. above.
$endgroup$
– Kimball
19 hours ago




$begingroup$
Note this answer is essentially the same as David Speyer's in the question linked to in the comment by @Alex M. above.
$endgroup$
– Kimball
19 hours ago




1




1




$begingroup$
"nobody ever sees it do so." - you made my day!
$endgroup$
– Wolfgang
9 hours ago




$begingroup$
"nobody ever sees it do so." - you made my day!
$endgroup$
– Wolfgang
9 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326315%2fpartial-sums-of-primes%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

What is the offset in a seaplane's hull?

Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029