Is `x >> pure y` equivalent to `liftM (const y) x`Unlike a Functor, a Monad can change shape?Why should Applicative be a superclass of Monad?Is there a monad that doesn't have a corresponding monad transformer (except IO)?Composition of compositions in HaskellHaskell: Flaw in the description of applicative functor laws in the hackage Control.Applicative article?: it says Applicative determines FunctorTo what extent are Applicative/Monad instances uniquely determined?Is this property of a functor stronger than a monad?Are applicative functors composed with the applicative style really independent?bind can be composed of fmap and join, so do we have to use monadic functions a -> m b?Do the monadic liftM and the functorial fmap have to be equivalent?

Was there a Viking Exchange as well as a Columbian one?

What was the "glowing package" Pym was expecting?

TikZ how to make supply and demand arrows for nodes?

Why didn't this hurt this character as badly?

How deep to place a deadman anchor for a slackline?

How to set the font color of quantity objects (Version 11.3 vs version 12)?

Can someone publish a story that happened to you?

What does "rf" mean in "rfkill"?

Confused by notation of atomic number Z and mass number A on periodic table of elements

Past Perfect Tense

What is a Recurrent Neural Network?

Lock in SQL Server and Oracle

What does YCWCYODFTRFDTY mean?

If Earth is tilted, why is Polaris always above the same spot?

Options leqno, reqno for documentclass or exist another option?

Were there two appearances of Stan Lee?

Packing rectangles: Does rotation ever help?

Pawn Sacrifice Justification

How can I record the screen and the rear camera on an iPhone simultaneously?

Electric guitar: why such heavy pots?

Do I have to worry about players making “bad” choices on level up?

Upright [...] in italics quotation

Pulling the rope with one hand is as heavy as with two hands?

Has any spacecraft ever had the ability to directly communicate with civilian air traffic control?



Is `x >> pure y` equivalent to `liftM (const y) x`


Unlike a Functor, a Monad can change shape?Why should Applicative be a superclass of Monad?Is there a monad that doesn't have a corresponding monad transformer (except IO)?Composition of compositions in HaskellHaskell: Flaw in the description of applicative functor laws in the hackage Control.Applicative article?: it says Applicative determines FunctorTo what extent are Applicative/Monad instances uniquely determined?Is this property of a functor stronger than a monad?Are applicative functors composed with the applicative style really independent?bind can be composed of fmap and join, so do we have to use monadic functions a -> m b?Do the monadic liftM and the functorial fmap have to be equivalent?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








15















The two expressions



y >> pure x
liftM (const x) y


have the same type signature in Haskell.
I was curious whether they were equivalent, but I could neither produce a proof of the fact nor a counter example against it.



If we rewrite the two expressions so that we can eliminate the x and y then the question becomes whether the two following functions are equivalent



flip (>>) . pure
liftM . const


Note that both these functions have type Monad m => a -> m b -> m a.



I used the laws that Haskell gives for monad, applicatives, and functors to transform both statements into various equivalent forms, but I was not able to produce a sequence of equivalences between the two.



For instance I found that y >> pure x can be rewritten as follows



y >>= const (pure x)
y *> pure x
(id <$ y) <*> pure x
fmap (const id) y <*> pure x


and liftM (const x) y can be rewritten as follows



fmap (const x) y
pure (const x) <*> y


None of these spring out to me as necessarily equivalent, but I cannot think of any cases where they would not be equivalent.










share|improve this question






























    15















    The two expressions



    y >> pure x
    liftM (const x) y


    have the same type signature in Haskell.
    I was curious whether they were equivalent, but I could neither produce a proof of the fact nor a counter example against it.



    If we rewrite the two expressions so that we can eliminate the x and y then the question becomes whether the two following functions are equivalent



    flip (>>) . pure
    liftM . const


    Note that both these functions have type Monad m => a -> m b -> m a.



    I used the laws that Haskell gives for monad, applicatives, and functors to transform both statements into various equivalent forms, but I was not able to produce a sequence of equivalences between the two.



    For instance I found that y >> pure x can be rewritten as follows



    y >>= const (pure x)
    y *> pure x
    (id <$ y) <*> pure x
    fmap (const id) y <*> pure x


    and liftM (const x) y can be rewritten as follows



    fmap (const x) y
    pure (const x) <*> y


    None of these spring out to me as necessarily equivalent, but I cannot think of any cases where they would not be equivalent.










    share|improve this question


























      15












      15








      15








      The two expressions



      y >> pure x
      liftM (const x) y


      have the same type signature in Haskell.
      I was curious whether they were equivalent, but I could neither produce a proof of the fact nor a counter example against it.



      If we rewrite the two expressions so that we can eliminate the x and y then the question becomes whether the two following functions are equivalent



      flip (>>) . pure
      liftM . const


      Note that both these functions have type Monad m => a -> m b -> m a.



      I used the laws that Haskell gives for monad, applicatives, and functors to transform both statements into various equivalent forms, but I was not able to produce a sequence of equivalences between the two.



      For instance I found that y >> pure x can be rewritten as follows



      y >>= const (pure x)
      y *> pure x
      (id <$ y) <*> pure x
      fmap (const id) y <*> pure x


      and liftM (const x) y can be rewritten as follows



      fmap (const x) y
      pure (const x) <*> y


      None of these spring out to me as necessarily equivalent, but I cannot think of any cases where they would not be equivalent.










      share|improve this question
















      The two expressions



      y >> pure x
      liftM (const x) y


      have the same type signature in Haskell.
      I was curious whether they were equivalent, but I could neither produce a proof of the fact nor a counter example against it.



      If we rewrite the two expressions so that we can eliminate the x and y then the question becomes whether the two following functions are equivalent



      flip (>>) . pure
      liftM . const


      Note that both these functions have type Monad m => a -> m b -> m a.



      I used the laws that Haskell gives for monad, applicatives, and functors to transform both statements into various equivalent forms, but I was not able to produce a sequence of equivalences between the two.



      For instance I found that y >> pure x can be rewritten as follows



      y >>= const (pure x)
      y *> pure x
      (id <$ y) <*> pure x
      fmap (const id) y <*> pure x


      and liftM (const x) y can be rewritten as follows



      fmap (const x) y
      pure (const x) <*> y


      None of these spring out to me as necessarily equivalent, but I cannot think of any cases where they would not be equivalent.







      haskell monads functor applicative






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 27 at 20:30









      duplode

      24.1k45092




      24.1k45092










      asked Mar 27 at 18:31









      10000000001000000000

      489214




      489214






















          3 Answers
          3






          active

          oldest

          votes


















          15














          The other answer gets there eventually, but it takes a long-winded route. All that is actually needed are the definitions of liftM, const, and a single monad law: m1 >> m2 and m1 >>= _ -> m2 must be semantically identical. (Indeed, this is the default implementation of (>>), and it is rare to override it.) Then:



          liftM (const x) y
          = definition of liftM*
          y >>= z -> pure (const x z)
          = definition of const
          y >>= z -> pure x
          = monad law
          y >> pure x


          * Okay, okay, so the actual definition of liftM uses return instead of pure. Whatever.






          share|improve this answer

























          • Interesting. For some reason I thought that the standard definition was liftM = fmap, with the more restrictive type. With the real definition above, the wanted equation is much simpler to obtain :)

            – chi
            Mar 27 at 20:00






          • 1





            @chi Even without it things aren't too bad: fmap f m = m >>= return . f is also a monad law (one of the oft-forgotten ones).

            – Daniel Wagner
            Mar 27 at 20:47







          • 5





            That law itself follows from parametricity and the monad law m >>= pure = m.

            – dfeuer
            Mar 27 at 21:27


















          12














          Yes they are the same



          Let's start with flip (>>) . pure, which is the pointfree version of x >> pure y you provide:



          flip (>>) . pure


          It is the case that flip (>>) is just (=<<) . const so we can rewrite this as:



          ((=<<) . const) . pure


          Since function composition ((.)) is associative we can write this as:



          (=<<) . (const . pure)


          Now we would like to rewrite const . pure. We can notice that const is just pure on (a ->), that means since pure . pure is fmap pure . pure, const . pure is (.) pure . const, ((.) is fmap for the functor (a ->)).



          (=<<) . ((.) pure . const)


          Now we associate again:



          ((=<<) . (.) pure) . const


          ((=<<) . (.) pure) is the definition for liftM1 so we can substitute:



          liftM . const


          And that is the goal. The two are the same.




          1: The definition of liftM is liftM f m1 = do x1 <- m1; return (f x1) , we can desugar the do into liftM f m1 = m1 >>= return . f. We can flip the (>>=) for liftM f m1 = return . f =<< m1 and elide the m1 to get liftM f = (return . f =<<) a little pointfree magic and we get liftM = (=<<) . (.) return






          share|improve this answer




















          • 1





            Can you please add how you get from const . pure to fmap pure . const? Btw it might have been easier to start with (.) right away instead of writing fmap (and later explaining (figuring out?) what Functor instance it belongs to).

            – Bergi
            Mar 27 at 22:30







          • 1





            @Bergi Actually you are right, doing it earlier makes things simpler.

            – Sriotchilism O'Zaic
            Mar 27 at 22:54


















          4














          One more possible route, exploiting the applicative laws:




          For instance I found that y >> pure x can be rewritten as follows [...]



          fmap (const id) y <*> pure x



          That amounts to...



          fmap (const id) y <*> pure x
          pure ($ x) <*> fmap (const id) y -- interchange law of applicatives
          fmap ($ x) (fmap (const id) y) -- fmap in terms of <*>
          fmap (($ x) . const id) y -- composition law of functors
          fmap (const x) y


          ... which, as you noted, is the same as liftM (const x) y.



          That this route requires only applicative laws and not monad ones reflects how (*>) (another name for (>>)) is an Applicative method.






          share|improve this answer

























            Your Answer






            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "1"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55384267%2fis-x-pure-y-equivalent-to-liftm-const-y-x%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            15














            The other answer gets there eventually, but it takes a long-winded route. All that is actually needed are the definitions of liftM, const, and a single monad law: m1 >> m2 and m1 >>= _ -> m2 must be semantically identical. (Indeed, this is the default implementation of (>>), and it is rare to override it.) Then:



            liftM (const x) y
            = definition of liftM*
            y >>= z -> pure (const x z)
            = definition of const
            y >>= z -> pure x
            = monad law
            y >> pure x


            * Okay, okay, so the actual definition of liftM uses return instead of pure. Whatever.






            share|improve this answer

























            • Interesting. For some reason I thought that the standard definition was liftM = fmap, with the more restrictive type. With the real definition above, the wanted equation is much simpler to obtain :)

              – chi
              Mar 27 at 20:00






            • 1





              @chi Even without it things aren't too bad: fmap f m = m >>= return . f is also a monad law (one of the oft-forgotten ones).

              – Daniel Wagner
              Mar 27 at 20:47







            • 5





              That law itself follows from parametricity and the monad law m >>= pure = m.

              – dfeuer
              Mar 27 at 21:27















            15














            The other answer gets there eventually, but it takes a long-winded route. All that is actually needed are the definitions of liftM, const, and a single monad law: m1 >> m2 and m1 >>= _ -> m2 must be semantically identical. (Indeed, this is the default implementation of (>>), and it is rare to override it.) Then:



            liftM (const x) y
            = definition of liftM*
            y >>= z -> pure (const x z)
            = definition of const
            y >>= z -> pure x
            = monad law
            y >> pure x


            * Okay, okay, so the actual definition of liftM uses return instead of pure. Whatever.






            share|improve this answer

























            • Interesting. For some reason I thought that the standard definition was liftM = fmap, with the more restrictive type. With the real definition above, the wanted equation is much simpler to obtain :)

              – chi
              Mar 27 at 20:00






            • 1





              @chi Even without it things aren't too bad: fmap f m = m >>= return . f is also a monad law (one of the oft-forgotten ones).

              – Daniel Wagner
              Mar 27 at 20:47







            • 5





              That law itself follows from parametricity and the monad law m >>= pure = m.

              – dfeuer
              Mar 27 at 21:27













            15












            15








            15







            The other answer gets there eventually, but it takes a long-winded route. All that is actually needed are the definitions of liftM, const, and a single monad law: m1 >> m2 and m1 >>= _ -> m2 must be semantically identical. (Indeed, this is the default implementation of (>>), and it is rare to override it.) Then:



            liftM (const x) y
            = definition of liftM*
            y >>= z -> pure (const x z)
            = definition of const
            y >>= z -> pure x
            = monad law
            y >> pure x


            * Okay, okay, so the actual definition of liftM uses return instead of pure. Whatever.






            share|improve this answer















            The other answer gets there eventually, but it takes a long-winded route. All that is actually needed are the definitions of liftM, const, and a single monad law: m1 >> m2 and m1 >>= _ -> m2 must be semantically identical. (Indeed, this is the default implementation of (>>), and it is rare to override it.) Then:



            liftM (const x) y
            = definition of liftM*
            y >>= z -> pure (const x z)
            = definition of const
            y >>= z -> pure x
            = monad law
            y >> pure x


            * Okay, okay, so the actual definition of liftM uses return instead of pure. Whatever.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Mar 27 at 18:59

























            answered Mar 27 at 18:54









            Daniel WagnerDaniel Wagner

            105k7163289




            105k7163289












            • Interesting. For some reason I thought that the standard definition was liftM = fmap, with the more restrictive type. With the real definition above, the wanted equation is much simpler to obtain :)

              – chi
              Mar 27 at 20:00






            • 1





              @chi Even without it things aren't too bad: fmap f m = m >>= return . f is also a monad law (one of the oft-forgotten ones).

              – Daniel Wagner
              Mar 27 at 20:47







            • 5





              That law itself follows from parametricity and the monad law m >>= pure = m.

              – dfeuer
              Mar 27 at 21:27

















            • Interesting. For some reason I thought that the standard definition was liftM = fmap, with the more restrictive type. With the real definition above, the wanted equation is much simpler to obtain :)

              – chi
              Mar 27 at 20:00






            • 1





              @chi Even without it things aren't too bad: fmap f m = m >>= return . f is also a monad law (one of the oft-forgotten ones).

              – Daniel Wagner
              Mar 27 at 20:47







            • 5





              That law itself follows from parametricity and the monad law m >>= pure = m.

              – dfeuer
              Mar 27 at 21:27
















            Interesting. For some reason I thought that the standard definition was liftM = fmap, with the more restrictive type. With the real definition above, the wanted equation is much simpler to obtain :)

            – chi
            Mar 27 at 20:00





            Interesting. For some reason I thought that the standard definition was liftM = fmap, with the more restrictive type. With the real definition above, the wanted equation is much simpler to obtain :)

            – chi
            Mar 27 at 20:00




            1




            1





            @chi Even without it things aren't too bad: fmap f m = m >>= return . f is also a monad law (one of the oft-forgotten ones).

            – Daniel Wagner
            Mar 27 at 20:47






            @chi Even without it things aren't too bad: fmap f m = m >>= return . f is also a monad law (one of the oft-forgotten ones).

            – Daniel Wagner
            Mar 27 at 20:47





            5




            5





            That law itself follows from parametricity and the monad law m >>= pure = m.

            – dfeuer
            Mar 27 at 21:27





            That law itself follows from parametricity and the monad law m >>= pure = m.

            – dfeuer
            Mar 27 at 21:27













            12














            Yes they are the same



            Let's start with flip (>>) . pure, which is the pointfree version of x >> pure y you provide:



            flip (>>) . pure


            It is the case that flip (>>) is just (=<<) . const so we can rewrite this as:



            ((=<<) . const) . pure


            Since function composition ((.)) is associative we can write this as:



            (=<<) . (const . pure)


            Now we would like to rewrite const . pure. We can notice that const is just pure on (a ->), that means since pure . pure is fmap pure . pure, const . pure is (.) pure . const, ((.) is fmap for the functor (a ->)).



            (=<<) . ((.) pure . const)


            Now we associate again:



            ((=<<) . (.) pure) . const


            ((=<<) . (.) pure) is the definition for liftM1 so we can substitute:



            liftM . const


            And that is the goal. The two are the same.




            1: The definition of liftM is liftM f m1 = do x1 <- m1; return (f x1) , we can desugar the do into liftM f m1 = m1 >>= return . f. We can flip the (>>=) for liftM f m1 = return . f =<< m1 and elide the m1 to get liftM f = (return . f =<<) a little pointfree magic and we get liftM = (=<<) . (.) return






            share|improve this answer




















            • 1





              Can you please add how you get from const . pure to fmap pure . const? Btw it might have been easier to start with (.) right away instead of writing fmap (and later explaining (figuring out?) what Functor instance it belongs to).

              – Bergi
              Mar 27 at 22:30







            • 1





              @Bergi Actually you are right, doing it earlier makes things simpler.

              – Sriotchilism O'Zaic
              Mar 27 at 22:54















            12














            Yes they are the same



            Let's start with flip (>>) . pure, which is the pointfree version of x >> pure y you provide:



            flip (>>) . pure


            It is the case that flip (>>) is just (=<<) . const so we can rewrite this as:



            ((=<<) . const) . pure


            Since function composition ((.)) is associative we can write this as:



            (=<<) . (const . pure)


            Now we would like to rewrite const . pure. We can notice that const is just pure on (a ->), that means since pure . pure is fmap pure . pure, const . pure is (.) pure . const, ((.) is fmap for the functor (a ->)).



            (=<<) . ((.) pure . const)


            Now we associate again:



            ((=<<) . (.) pure) . const


            ((=<<) . (.) pure) is the definition for liftM1 so we can substitute:



            liftM . const


            And that is the goal. The two are the same.




            1: The definition of liftM is liftM f m1 = do x1 <- m1; return (f x1) , we can desugar the do into liftM f m1 = m1 >>= return . f. We can flip the (>>=) for liftM f m1 = return . f =<< m1 and elide the m1 to get liftM f = (return . f =<<) a little pointfree magic and we get liftM = (=<<) . (.) return






            share|improve this answer




















            • 1





              Can you please add how you get from const . pure to fmap pure . const? Btw it might have been easier to start with (.) right away instead of writing fmap (and later explaining (figuring out?) what Functor instance it belongs to).

              – Bergi
              Mar 27 at 22:30







            • 1





              @Bergi Actually you are right, doing it earlier makes things simpler.

              – Sriotchilism O'Zaic
              Mar 27 at 22:54













            12












            12








            12







            Yes they are the same



            Let's start with flip (>>) . pure, which is the pointfree version of x >> pure y you provide:



            flip (>>) . pure


            It is the case that flip (>>) is just (=<<) . const so we can rewrite this as:



            ((=<<) . const) . pure


            Since function composition ((.)) is associative we can write this as:



            (=<<) . (const . pure)


            Now we would like to rewrite const . pure. We can notice that const is just pure on (a ->), that means since pure . pure is fmap pure . pure, const . pure is (.) pure . const, ((.) is fmap for the functor (a ->)).



            (=<<) . ((.) pure . const)


            Now we associate again:



            ((=<<) . (.) pure) . const


            ((=<<) . (.) pure) is the definition for liftM1 so we can substitute:



            liftM . const


            And that is the goal. The two are the same.




            1: The definition of liftM is liftM f m1 = do x1 <- m1; return (f x1) , we can desugar the do into liftM f m1 = m1 >>= return . f. We can flip the (>>=) for liftM f m1 = return . f =<< m1 and elide the m1 to get liftM f = (return . f =<<) a little pointfree magic and we get liftM = (=<<) . (.) return






            share|improve this answer















            Yes they are the same



            Let's start with flip (>>) . pure, which is the pointfree version of x >> pure y you provide:



            flip (>>) . pure


            It is the case that flip (>>) is just (=<<) . const so we can rewrite this as:



            ((=<<) . const) . pure


            Since function composition ((.)) is associative we can write this as:



            (=<<) . (const . pure)


            Now we would like to rewrite const . pure. We can notice that const is just pure on (a ->), that means since pure . pure is fmap pure . pure, const . pure is (.) pure . const, ((.) is fmap for the functor (a ->)).



            (=<<) . ((.) pure . const)


            Now we associate again:



            ((=<<) . (.) pure) . const


            ((=<<) . (.) pure) is the definition for liftM1 so we can substitute:



            liftM . const


            And that is the goal. The two are the same.




            1: The definition of liftM is liftM f m1 = do x1 <- m1; return (f x1) , we can desugar the do into liftM f m1 = m1 >>= return . f. We can flip the (>>=) for liftM f m1 = return . f =<< m1 and elide the m1 to get liftM f = (return . f =<<) a little pointfree magic and we get liftM = (=<<) . (.) return







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Mar 27 at 22:54

























            answered Mar 27 at 18:31









            Sriotchilism O'ZaicSriotchilism O'Zaic

            868620




            868620







            • 1





              Can you please add how you get from const . pure to fmap pure . const? Btw it might have been easier to start with (.) right away instead of writing fmap (and later explaining (figuring out?) what Functor instance it belongs to).

              – Bergi
              Mar 27 at 22:30







            • 1





              @Bergi Actually you are right, doing it earlier makes things simpler.

              – Sriotchilism O'Zaic
              Mar 27 at 22:54












            • 1





              Can you please add how you get from const . pure to fmap pure . const? Btw it might have been easier to start with (.) right away instead of writing fmap (and later explaining (figuring out?) what Functor instance it belongs to).

              – Bergi
              Mar 27 at 22:30







            • 1





              @Bergi Actually you are right, doing it earlier makes things simpler.

              – Sriotchilism O'Zaic
              Mar 27 at 22:54







            1




            1





            Can you please add how you get from const . pure to fmap pure . const? Btw it might have been easier to start with (.) right away instead of writing fmap (and later explaining (figuring out?) what Functor instance it belongs to).

            – Bergi
            Mar 27 at 22:30






            Can you please add how you get from const . pure to fmap pure . const? Btw it might have been easier to start with (.) right away instead of writing fmap (and later explaining (figuring out?) what Functor instance it belongs to).

            – Bergi
            Mar 27 at 22:30





            1




            1





            @Bergi Actually you are right, doing it earlier makes things simpler.

            – Sriotchilism O'Zaic
            Mar 27 at 22:54





            @Bergi Actually you are right, doing it earlier makes things simpler.

            – Sriotchilism O'Zaic
            Mar 27 at 22:54











            4














            One more possible route, exploiting the applicative laws:




            For instance I found that y >> pure x can be rewritten as follows [...]



            fmap (const id) y <*> pure x



            That amounts to...



            fmap (const id) y <*> pure x
            pure ($ x) <*> fmap (const id) y -- interchange law of applicatives
            fmap ($ x) (fmap (const id) y) -- fmap in terms of <*>
            fmap (($ x) . const id) y -- composition law of functors
            fmap (const x) y


            ... which, as you noted, is the same as liftM (const x) y.



            That this route requires only applicative laws and not monad ones reflects how (*>) (another name for (>>)) is an Applicative method.






            share|improve this answer





























              4














              One more possible route, exploiting the applicative laws:




              For instance I found that y >> pure x can be rewritten as follows [...]



              fmap (const id) y <*> pure x



              That amounts to...



              fmap (const id) y <*> pure x
              pure ($ x) <*> fmap (const id) y -- interchange law of applicatives
              fmap ($ x) (fmap (const id) y) -- fmap in terms of <*>
              fmap (($ x) . const id) y -- composition law of functors
              fmap (const x) y


              ... which, as you noted, is the same as liftM (const x) y.



              That this route requires only applicative laws and not monad ones reflects how (*>) (another name for (>>)) is an Applicative method.






              share|improve this answer



























                4












                4








                4







                One more possible route, exploiting the applicative laws:




                For instance I found that y >> pure x can be rewritten as follows [...]



                fmap (const id) y <*> pure x



                That amounts to...



                fmap (const id) y <*> pure x
                pure ($ x) <*> fmap (const id) y -- interchange law of applicatives
                fmap ($ x) (fmap (const id) y) -- fmap in terms of <*>
                fmap (($ x) . const id) y -- composition law of functors
                fmap (const x) y


                ... which, as you noted, is the same as liftM (const x) y.



                That this route requires only applicative laws and not monad ones reflects how (*>) (another name for (>>)) is an Applicative method.






                share|improve this answer















                One more possible route, exploiting the applicative laws:




                For instance I found that y >> pure x can be rewritten as follows [...]



                fmap (const id) y <*> pure x



                That amounts to...



                fmap (const id) y <*> pure x
                pure ($ x) <*> fmap (const id) y -- interchange law of applicatives
                fmap ($ x) (fmap (const id) y) -- fmap in terms of <*>
                fmap (($ x) . const id) y -- composition law of functors
                fmap (const x) y


                ... which, as you noted, is the same as liftM (const x) y.



                That this route requires only applicative laws and not monad ones reflects how (*>) (another name for (>>)) is an Applicative method.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Mar 27 at 22:37

























                answered Mar 27 at 20:27









                duplodeduplode

                24.1k45092




                24.1k45092



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55384267%2fis-x-pure-y-equivalent-to-liftm-const-y-x%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

                    Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                    He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome