Can threat to survival increase mutation rates in germline cells?Mutation rate in virusescan a point mutation cause a frameshift?Source for an upper bound in the number of genes based on mutation ratesPoint mutation vs IndelsCan mutation rate be selected for?For long term survival of a species in a harsh environment which is more important-mutation or evolution?Is there an existing database of mutation rates for mitochondrial loci?Can a less fit species evolve from a more fit species, by living at separate places?Does the mutation CCR5-delta 32 increase the genetic info?Are inadvertent environmental catastrophes also examples of natural selection?

Missed the connecting flight, separate tickets on same airline - who is responsible?

Short story with physics professor who "brings back the dead" (Asimov or Bradbury?)

How to get a product new from and to date in phtml file in magento 2

Which industry am I working in? Software development or financial services?

What happens if I start too many background jobs?

How do I tell my manager that his code review comment is wrong?

How to reply this mail from potential PhD professor?

Why wasn't the Night King naked in S08E03?

Would a 1/1 token with persist dying trigger on death effects a second time?

Why is parseInt(021, 8) === 15?

Why is `abs()` implemented differently?

What are the spoon bit of a spoon and fork bit of a fork called?

On which topic did Indiana Jones write his doctoral thesis?

Was Unix ever a single-user OS?

/dev/mem vs /dev/i2c-1

Airbnb - host wants to reduce rooms, can we get refund?

Identifying my late father's D&D stuff found in the attic

Would glacier 'trees' be plausible?

Junior developer struggles: how to communicate with management?

My ID is expired, can I fly to the Bahamas with my passport?

What happens to the Time Stone

Returning the outputs of a nested structure

How can I support myself financially as a 17 year old with a loan?

I caught several of my students plagiarizing. Could it be my fault as a teacher?



Can threat to survival increase mutation rates in germline cells?


Mutation rate in virusescan a point mutation cause a frameshift?Source for an upper bound in the number of genes based on mutation ratesPoint mutation vs IndelsCan mutation rate be selected for?For long term survival of a species in a harsh environment which is more important-mutation or evolution?Is there an existing database of mutation rates for mitochondrial loci?Can a less fit species evolve from a more fit species, by living at separate places?Does the mutation CCR5-delta 32 increase the genetic info?Are inadvertent environmental catastrophes also examples of natural selection?













2












$begingroup$


Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



In bacteria this is known as "Stress Induced Mutagensis"



Is there something comparable to that in animals and plants?










share|improve this question











$endgroup$
















    2












    $begingroup$


    Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



    In bacteria this is known as "Stress Induced Mutagensis"



    Is there something comparable to that in animals and plants?










    share|improve this question











    $endgroup$














      2












      2








      2


      1



      $begingroup$


      Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



      In bacteria this is known as "Stress Induced Mutagensis"



      Is there something comparable to that in animals and plants?










      share|improve this question











      $endgroup$




      Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



      In bacteria this is known as "Stress Induced Mutagensis"



      Is there something comparable to that in animals and plants?







      evolution mutations sexual-reproduction






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 29 at 12:29







      Zuhair Al-Johar

















      asked Mar 29 at 9:05









      Zuhair Al-JoharZuhair Al-Johar

      2369




      2369




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$












          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            Mar 29 at 13:52











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            Mar 29 at 14:33






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            Mar 29 at 17:08












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "375"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fbiology.stackexchange.com%2fquestions%2f82346%2fcan-threat-to-survival-increase-mutation-rates-in-germline-cells%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$












          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            Mar 29 at 13:52











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            Mar 29 at 14:33






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            Mar 29 at 17:08
















          4












          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$












          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            Mar 29 at 13:52











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            Mar 29 at 14:33






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            Mar 29 at 17:08














          4












          4








          4





          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$



          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Mar 29 at 16:02

























          answered Mar 29 at 10:27









          FizzFizz

          1,064316




          1,064316











          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            Mar 29 at 13:52











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            Mar 29 at 14:33






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            Mar 29 at 17:08

















          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            Mar 29 at 13:43










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            Mar 29 at 13:52











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            Mar 29 at 14:33






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            Mar 29 at 17:08
















          $begingroup$
          but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
          $endgroup$
          – Zuhair Al-Johar
          Mar 29 at 13:43





          $begingroup$
          but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
          $endgroup$
          – Zuhair Al-Johar
          Mar 29 at 13:43













          $begingroup$
          see: medicalnewstoday.com/articles/277543.php
          $endgroup$
          – Zuhair Al-Johar
          Mar 29 at 13:43




          $begingroup$
          see: medicalnewstoday.com/articles/277543.php
          $endgroup$
          – Zuhair Al-Johar
          Mar 29 at 13:43












          $begingroup$
          @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
          $endgroup$
          – Fizz
          Mar 29 at 13:52





          $begingroup$
          @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
          $endgroup$
          – Fizz
          Mar 29 at 13:52













          $begingroup$
          I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
          $endgroup$
          – terdon
          Mar 29 at 14:33




          $begingroup$
          I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
          $endgroup$
          – terdon
          Mar 29 at 14:33




          1




          1




          $begingroup$
          @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
          $endgroup$
          – Cell
          Mar 29 at 17:08





          $begingroup$
          @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
          $endgroup$
          – Cell
          Mar 29 at 17:08


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Biology Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fbiology.stackexchange.com%2fquestions%2f82346%2fcan-threat-to-survival-increase-mutation-rates-in-germline-cells%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

          He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

          Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029