Find the identical rows in a matrix [duplicate]












6












$begingroup$



This question already has an answer here:




  • How to efficiently find positions of duplicates?

    8 answers




Suppose I have the following matrix:



M = 
{{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0,1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

TableForm[M, TableHeadings -> {{S1, S2, S3, S4, S5, S6, S7, S8}}]


matrix



In this case, it turns out that rows (S1, S8), (S2, S3, S4), (S5, S6, S7) have equal element values in identical column positions. I have a 1000 x 1000 matrix to examine and would appreciate any assistance in coding this problem.










share|improve this question











$endgroup$



marked as duplicate by Michael E2, m_goldberg, happy fish, bbgodfrey, C. E. May 1 at 13:07


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 3




    $begingroup$
    Try Values[PositionIndex[M]]
    $endgroup$
    – Coolwater
    Apr 25 at 21:39










  • $begingroup$
    @Coolwater If there is a unique row, your method will fail. At least one needs to delete if list has length 1
    $endgroup$
    – Okkes Dulgerci
    Apr 25 at 22:58










  • $begingroup$
    @Coolwater IMHO, the best answer is lacking so far. Please consider posting PositionIndex as possible solution.
    $endgroup$
    – Henrik Schumacher
    Apr 26 at 12:08
















6












$begingroup$



This question already has an answer here:




  • How to efficiently find positions of duplicates?

    8 answers




Suppose I have the following matrix:



M = 
{{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0,1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

TableForm[M, TableHeadings -> {{S1, S2, S3, S4, S5, S6, S7, S8}}]


matrix



In this case, it turns out that rows (S1, S8), (S2, S3, S4), (S5, S6, S7) have equal element values in identical column positions. I have a 1000 x 1000 matrix to examine and would appreciate any assistance in coding this problem.










share|improve this question











$endgroup$



marked as duplicate by Michael E2, m_goldberg, happy fish, bbgodfrey, C. E. May 1 at 13:07


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 3




    $begingroup$
    Try Values[PositionIndex[M]]
    $endgroup$
    – Coolwater
    Apr 25 at 21:39










  • $begingroup$
    @Coolwater If there is a unique row, your method will fail. At least one needs to delete if list has length 1
    $endgroup$
    – Okkes Dulgerci
    Apr 25 at 22:58










  • $begingroup$
    @Coolwater IMHO, the best answer is lacking so far. Please consider posting PositionIndex as possible solution.
    $endgroup$
    – Henrik Schumacher
    Apr 26 at 12:08














6












6








6


2



$begingroup$



This question already has an answer here:




  • How to efficiently find positions of duplicates?

    8 answers




Suppose I have the following matrix:



M = 
{{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0,1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

TableForm[M, TableHeadings -> {{S1, S2, S3, S4, S5, S6, S7, S8}}]


matrix



In this case, it turns out that rows (S1, S8), (S2, S3, S4), (S5, S6, S7) have equal element values in identical column positions. I have a 1000 x 1000 matrix to examine and would appreciate any assistance in coding this problem.










share|improve this question











$endgroup$





This question already has an answer here:




  • How to efficiently find positions of duplicates?

    8 answers




Suppose I have the following matrix:



M = 
{{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0,1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

TableForm[M, TableHeadings -> {{S1, S2, S3, S4, S5, S6, S7, S8}}]


matrix



In this case, it turns out that rows (S1, S8), (S2, S3, S4), (S5, S6, S7) have equal element values in identical column positions. I have a 1000 x 1000 matrix to examine and would appreciate any assistance in coding this problem.





This question already has an answer here:




  • How to efficiently find positions of duplicates?

    8 answers








list-manipulation matrix






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 25 at 20:03









m_goldberg

90.4k873203




90.4k873203










asked Apr 25 at 19:15









PRGPRG

1248




1248




marked as duplicate by Michael E2, m_goldberg, happy fish, bbgodfrey, C. E. May 1 at 13:07


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Michael E2, m_goldberg, happy fish, bbgodfrey, C. E. May 1 at 13:07


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 3




    $begingroup$
    Try Values[PositionIndex[M]]
    $endgroup$
    – Coolwater
    Apr 25 at 21:39










  • $begingroup$
    @Coolwater If there is a unique row, your method will fail. At least one needs to delete if list has length 1
    $endgroup$
    – Okkes Dulgerci
    Apr 25 at 22:58










  • $begingroup$
    @Coolwater IMHO, the best answer is lacking so far. Please consider posting PositionIndex as possible solution.
    $endgroup$
    – Henrik Schumacher
    Apr 26 at 12:08














  • 3




    $begingroup$
    Try Values[PositionIndex[M]]
    $endgroup$
    – Coolwater
    Apr 25 at 21:39










  • $begingroup$
    @Coolwater If there is a unique row, your method will fail. At least one needs to delete if list has length 1
    $endgroup$
    – Okkes Dulgerci
    Apr 25 at 22:58










  • $begingroup$
    @Coolwater IMHO, the best answer is lacking so far. Please consider posting PositionIndex as possible solution.
    $endgroup$
    – Henrik Schumacher
    Apr 26 at 12:08








3




3




$begingroup$
Try Values[PositionIndex[M]]
$endgroup$
– Coolwater
Apr 25 at 21:39




$begingroup$
Try Values[PositionIndex[M]]
$endgroup$
– Coolwater
Apr 25 at 21:39












$begingroup$
@Coolwater If there is a unique row, your method will fail. At least one needs to delete if list has length 1
$endgroup$
– Okkes Dulgerci
Apr 25 at 22:58




$begingroup$
@Coolwater If there is a unique row, your method will fail. At least one needs to delete if list has length 1
$endgroup$
– Okkes Dulgerci
Apr 25 at 22:58












$begingroup$
@Coolwater IMHO, the best answer is lacking so far. Please consider posting PositionIndex as possible solution.
$endgroup$
– Henrik Schumacher
Apr 26 at 12:08




$begingroup$
@Coolwater IMHO, the best answer is lacking so far. Please consider posting PositionIndex as possible solution.
$endgroup$
– Henrik Schumacher
Apr 26 at 12:08










4 Answers
4






active

oldest

votes


















2












$begingroup$

I'd use GroupBy.



First the names of the rows: can be anything you like, for example



rownames = Array[ToExpression["S" <> ToString[#]] &, Length[M]]



{S1, S2, S3, S4, S5, S6, S7, S8}




Next the grouping:



groups = GroupBy[Thread[rownames -> M], Last -> First]



<|{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} -> {S1, S8},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0} -> {S2, S3, S4},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0} -> {S5, S6, S7}|>




If all you need are the names:



Values[groups]



{{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







share|improve this answer









$endgroup$





















    8












    $begingroup$

    idx = DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]



    {{1, 8}, {2, 3, 4}, {5, 6, 7}}




    In order to obtain the labels of the rows, you may use the following:



    labels = {S1, S2, S3, S4, S5, S6, S7, S8};
    Map[labels[[#]] &, idx, {2}]



    {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







    share|improve this answer











    $endgroup$













    • $begingroup$
      Henrik: Can I add the S in front of the result; e.g., (S1,S8),(S3,S4),(S5,S6,S7)?
      $endgroup$
      – PRG
      Apr 25 at 19:26










    • $begingroup$
      MANY THANKS, HENRIK!
      $endgroup$
      – PRG
      Apr 25 at 20:33










    • $begingroup$
      YOU'RE WELCOME, PRG! =D
      $endgroup$
      – Henrik Schumacher
      Apr 25 at 20:34



















    6












    $begingroup$

    The function positionDuplicates from How to efficiently find positions of duplicates? does the job, faster than Nearest.



    (* Henrik's method *)
    posDupes[M_] := DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]

    SeedRandom[0]; (* to make a reproducible 1000 x 1000 matrix *)
    foo = Nest[RandomInteger[1, {1000, 1000}] # &, 1, 9];

    d1 = Cases[positionDuplicates[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
    (* {0.017, Null} *)

    d2 = Cases[posDupes[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
    (* {0.060, Null} *)

    d1 == d2
    (* True *)

    d1
    (*
    {{25, 75, 291, 355, 356, 425, 475, 518, 547, 668, 670, 750, 777},
    {173, 516}, {544, 816}, {610, 720}}
    *)





    share|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Cases[Values[PositionIndex[M]], dupe_ /; Length[dupe] > 1] is faster than positionDuplicates
      $endgroup$
      – Okkes Dulgerci
      Apr 26 at 1:41










    • $begingroup$
      @OkkesDulgerci Yes, it is for me, too, in V12. My main point is that the solution to this question has been given in another Q&A. See this answer for the PositionIndex solutoin.
      $endgroup$
      – Michael E2
      Apr 26 at 1:44








    • 3




      $begingroup$
      @OkkesDulgerci It's interesting that PositionIndex outperforms positionDuplicates on a list of lists, because it is still much slower on a list of integers.
      $endgroup$
      – Michael E2
      Apr 26 at 1:53



















    3












    $begingroup$

    While this question repeats a previous query about finding DuplicatePositions, the duplicates here are amongst a list of binary vectors in contrast to the original duplicates occurring amongst a list of numbers. As illustrated in an answer to the original query however, the type, depth and distribution of inputs can significantly impact efficiency so there may well be further optimizations specific to this case of finding duplicates amongst binary vectors. The following summarises timings of the "superfunction" DuplicatePositions (collected and defined from answers to the original question - in particular Szabolcs, Carl Woll and Mr.Wizard), postionDuplicates (the fastest solutions for numbers from Szabolcs) and a tweeking in the "UseGatherByLocalMap" Method option (from Carl Woll), the accepted groupBy answer (by Roman) and the nearest answer (by Henrik Schumacher) for various types of binary vectors. I've contributed the "UseOrdering" Method in DuplicatePositions.



    duplicatePositionsByOrdering[ls_]:= SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First]


    which seems to do well for sparse vectors (a more succinct version of similar ideas used by Mr.Wizard and Leonid Shifrin in their anwers). Note that a random 1000x1000 binary matrix is very likely to be sparse to the point of no (row) duplicates occurring so presumably in the OP's situation the authentic data is not randomly generated and instead includes manufactured repeats. To the timings (the tag function just puts in the S1, S2 ... tags as originally requested and the tick indicates identical output):



    enter image description here



    Obviously timings aren't everything as short-clear functions can often be preferable (as well as potentially being more efficient for different inputs) but it can also sometimes be illuminating--here for example, indicating that GroupBy seems to recognize order for ragged vectors unlike GatherBy.



    The code for the above output is below



    SetAttributes[benchmark, HoldAll];

    benchmark[functions_, opts : OptionsPattern] :=
    Function[input, benchmark[functions, input, opts], HoldAll];

    benchmark[functions_, input_, OptionsPattern] := Module[{
    tm = Function[fn,
    Function[x, <|ToString[fn] -> RepeatedTiming@fn@x|>]],
    timesOutputs, times},
    SeedRandom@0;
    timesOutputs = Through[(tm /@ functions)@input];
    times =
    SortBy[Query[All, All, First]@timesOutputs, Last] // Dataset;
    If[OptionValue@"CheckOutputs",
    Labeled[times,
    Row[{ToString@Unevaluated@input, Spacer@80,
    If[SameQ @@ (Query[All, Last, 2]@timesOutputs),
    Style["[Checkmark]", Green, 20], Style["x", Red, 20]]}],
    Top], times]
    ];

    Options[benchmark] = {"CheckOutputs" -> True};

    Options[DuplicatePositions] = {Method -> Automatic};

    DuplicatePositions[ls_, OptionsPattern] :=
    With[{method = OptionValue[Method]},
    Switch[method,
    "UseGatherBy", GatherBy[Range@Length@ls, ls[[#]] &],
    "UsePositionIndex", Values@PositionIndex@ls,
    "UseOrdering", SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First],
    "UseGatherByLocalMap", Module[{func}, func /: Map[func, _] := ls;
    GatherBy[Range@Length@ls, func]],
    Automatic, Which[
    ArrayQ[ls, 1, NumericQ],
    DuplicatePositions[ls, "Method" -> "UseGatherBy" ],
    ArrayQ[ls, 2, NumericQ], DuplicatePositionsBy[ls, FromDigits],
    MatchQ[{{_?IntegerQ ..} ..}]@ls,
    DuplicatePositionsBy[ls, FromDigits],
    True, DuplicatePositions[ls, Method -> "UsePositionIndex" ]
    ]]];

    DuplicatePositionsBy[ls_, fn_, opts : OptionsPattern] :=
    DuplicatePositions[fn /@ ls, opts];

    tag = Map["S" <> ToString@# &, #, {-1}] &;
    positionDuplicates[ls_] := GatherBy[Range@Length@ls, ls[[#]] &];
    groupBy[M_] := With[
    {rownames = Array["S" <> ToString[#] &, Length[M]]},
    Values@GroupBy[Thread[rownames -> M], Last -> First]];
    nearest[M_] :=
    DeleteDuplicates[
    Sort /@ Nearest[M -> Automatic, M, {[Infinity], 0}]];
    n = 10^4;
    binaryVectors50k =
    IntegerDigits[#, 2, 13] & /@ RandomInteger[n, 5*n];
    fns = {
    groupBy,
    (nearest@# // tag) &,
    (DuplicatePositions@# // tag) &,
    (DuplicatePositionsBy[#, FromDigits[#, 2] &,
    Method -> "UseGatherByLocalMap"] // tag) &,
    (positionDuplicates@# // tag) &
    };
    benchmark[fns]@binaryVectors50k
    n = 10^3;
    binaryVectorsRagged5k = IntegerDigits[#, 2] & /@ RandomInteger[n, 5*n];
    fns = {
    groupBy,
    (DuplicatePositions@# // tag) &,
    (DuplicatePositionsBy[#, FromDigits[#, 2] &,
    Method -> "UseGatherByLocalMap"] // tag) &,
    (positionDuplicates@# // tag) &
    };
    benchmark[fns]@binaryVectorsRagged5k

    n = 10^4;
    binaryVectorsSparse10k := RandomInteger[1, {n, n}];
    fns = {
    (DuplicatePositions@# // tag) &,
    (positionDuplicates@# // tag) &,
    (DuplicatePositions[#, Method -> "UseOrdering"] // tag) &,
    groupBy};
    benchmark[fns]@binaryVectorsSparse10k





    share|improve this answer











    $endgroup$




















      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      I'd use GroupBy.



      First the names of the rows: can be anything you like, for example



      rownames = Array[ToExpression["S" <> ToString[#]] &, Length[M]]



      {S1, S2, S3, S4, S5, S6, S7, S8}




      Next the grouping:



      groups = GroupBy[Thread[rownames -> M], Last -> First]



      <|{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} -> {S1, S8},
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0} -> {S2, S3, S4},
      {0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0} -> {S5, S6, S7}|>




      If all you need are the names:



      Values[groups]



      {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







      share|improve this answer









      $endgroup$


















        2












        $begingroup$

        I'd use GroupBy.



        First the names of the rows: can be anything you like, for example



        rownames = Array[ToExpression["S" <> ToString[#]] &, Length[M]]



        {S1, S2, S3, S4, S5, S6, S7, S8}




        Next the grouping:



        groups = GroupBy[Thread[rownames -> M], Last -> First]



        <|{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} -> {S1, S8},
        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0} -> {S2, S3, S4},
        {0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0} -> {S5, S6, S7}|>




        If all you need are the names:



        Values[groups]



        {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







        share|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          I'd use GroupBy.



          First the names of the rows: can be anything you like, for example



          rownames = Array[ToExpression["S" <> ToString[#]] &, Length[M]]



          {S1, S2, S3, S4, S5, S6, S7, S8}




          Next the grouping:



          groups = GroupBy[Thread[rownames -> M], Last -> First]



          <|{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} -> {S1, S8},
          {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0} -> {S2, S3, S4},
          {0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0} -> {S5, S6, S7}|>




          If all you need are the names:



          Values[groups]



          {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







          share|improve this answer









          $endgroup$



          I'd use GroupBy.



          First the names of the rows: can be anything you like, for example



          rownames = Array[ToExpression["S" <> ToString[#]] &, Length[M]]



          {S1, S2, S3, S4, S5, S6, S7, S8}




          Next the grouping:



          groups = GroupBy[Thread[rownames -> M], Last -> First]



          <|{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} -> {S1, S8},
          {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0} -> {S2, S3, S4},
          {0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0} -> {S5, S6, S7}|>




          If all you need are the names:



          Values[groups]



          {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Apr 26 at 11:45









          RomanRoman

          9,59511440




          9,59511440























              8












              $begingroup$

              idx = DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]



              {{1, 8}, {2, 3, 4}, {5, 6, 7}}




              In order to obtain the labels of the rows, you may use the following:



              labels = {S1, S2, S3, S4, S5, S6, S7, S8};
              Map[labels[[#]] &, idx, {2}]



              {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







              share|improve this answer











              $endgroup$













              • $begingroup$
                Henrik: Can I add the S in front of the result; e.g., (S1,S8),(S3,S4),(S5,S6,S7)?
                $endgroup$
                – PRG
                Apr 25 at 19:26










              • $begingroup$
                MANY THANKS, HENRIK!
                $endgroup$
                – PRG
                Apr 25 at 20:33










              • $begingroup$
                YOU'RE WELCOME, PRG! =D
                $endgroup$
                – Henrik Schumacher
                Apr 25 at 20:34
















              8












              $begingroup$

              idx = DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]



              {{1, 8}, {2, 3, 4}, {5, 6, 7}}




              In order to obtain the labels of the rows, you may use the following:



              labels = {S1, S2, S3, S4, S5, S6, S7, S8};
              Map[labels[[#]] &, idx, {2}]



              {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







              share|improve this answer











              $endgroup$













              • $begingroup$
                Henrik: Can I add the S in front of the result; e.g., (S1,S8),(S3,S4),(S5,S6,S7)?
                $endgroup$
                – PRG
                Apr 25 at 19:26










              • $begingroup$
                MANY THANKS, HENRIK!
                $endgroup$
                – PRG
                Apr 25 at 20:33










              • $begingroup$
                YOU'RE WELCOME, PRG! =D
                $endgroup$
                – Henrik Schumacher
                Apr 25 at 20:34














              8












              8








              8





              $begingroup$

              idx = DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]



              {{1, 8}, {2, 3, 4}, {5, 6, 7}}




              In order to obtain the labels of the rows, you may use the following:



              labels = {S1, S2, S3, S4, S5, S6, S7, S8};
              Map[labels[[#]] &, idx, {2}]



              {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}







              share|improve this answer











              $endgroup$



              idx = DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]



              {{1, 8}, {2, 3, 4}, {5, 6, 7}}




              In order to obtain the labels of the rows, you may use the following:



              labels = {S1, S2, S3, S4, S5, S6, S7, S8};
              Map[labels[[#]] &, idx, {2}]



              {{S1, S8}, {S2, S3, S4}, {S5, S6, S7}}








              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Apr 25 at 20:04

























              answered Apr 25 at 19:22









              Henrik SchumacherHenrik Schumacher

              63.2k587176




              63.2k587176












              • $begingroup$
                Henrik: Can I add the S in front of the result; e.g., (S1,S8),(S3,S4),(S5,S6,S7)?
                $endgroup$
                – PRG
                Apr 25 at 19:26










              • $begingroup$
                MANY THANKS, HENRIK!
                $endgroup$
                – PRG
                Apr 25 at 20:33










              • $begingroup$
                YOU'RE WELCOME, PRG! =D
                $endgroup$
                – Henrik Schumacher
                Apr 25 at 20:34


















              • $begingroup$
                Henrik: Can I add the S in front of the result; e.g., (S1,S8),(S3,S4),(S5,S6,S7)?
                $endgroup$
                – PRG
                Apr 25 at 19:26










              • $begingroup$
                MANY THANKS, HENRIK!
                $endgroup$
                – PRG
                Apr 25 at 20:33










              • $begingroup$
                YOU'RE WELCOME, PRG! =D
                $endgroup$
                – Henrik Schumacher
                Apr 25 at 20:34
















              $begingroup$
              Henrik: Can I add the S in front of the result; e.g., (S1,S8),(S3,S4),(S5,S6,S7)?
              $endgroup$
              – PRG
              Apr 25 at 19:26




              $begingroup$
              Henrik: Can I add the S in front of the result; e.g., (S1,S8),(S3,S4),(S5,S6,S7)?
              $endgroup$
              – PRG
              Apr 25 at 19:26












              $begingroup$
              MANY THANKS, HENRIK!
              $endgroup$
              – PRG
              Apr 25 at 20:33




              $begingroup$
              MANY THANKS, HENRIK!
              $endgroup$
              – PRG
              Apr 25 at 20:33












              $begingroup$
              YOU'RE WELCOME, PRG! =D
              $endgroup$
              – Henrik Schumacher
              Apr 25 at 20:34




              $begingroup$
              YOU'RE WELCOME, PRG! =D
              $endgroup$
              – Henrik Schumacher
              Apr 25 at 20:34











              6












              $begingroup$

              The function positionDuplicates from How to efficiently find positions of duplicates? does the job, faster than Nearest.



              (* Henrik's method *)
              posDupes[M_] := DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]

              SeedRandom[0]; (* to make a reproducible 1000 x 1000 matrix *)
              foo = Nest[RandomInteger[1, {1000, 1000}] # &, 1, 9];

              d1 = Cases[positionDuplicates[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.017, Null} *)

              d2 = Cases[posDupes[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.060, Null} *)

              d1 == d2
              (* True *)

              d1
              (*
              {{25, 75, 291, 355, 356, 425, 475, 518, 547, 668, 670, 750, 777},
              {173, 516}, {544, 816}, {610, 720}}
              *)





              share|improve this answer









              $endgroup$









              • 1




                $begingroup$
                Cases[Values[PositionIndex[M]], dupe_ /; Length[dupe] > 1] is faster than positionDuplicates
                $endgroup$
                – Okkes Dulgerci
                Apr 26 at 1:41










              • $begingroup$
                @OkkesDulgerci Yes, it is for me, too, in V12. My main point is that the solution to this question has been given in another Q&A. See this answer for the PositionIndex solutoin.
                $endgroup$
                – Michael E2
                Apr 26 at 1:44








              • 3




                $begingroup$
                @OkkesDulgerci It's interesting that PositionIndex outperforms positionDuplicates on a list of lists, because it is still much slower on a list of integers.
                $endgroup$
                – Michael E2
                Apr 26 at 1:53
















              6












              $begingroup$

              The function positionDuplicates from How to efficiently find positions of duplicates? does the job, faster than Nearest.



              (* Henrik's method *)
              posDupes[M_] := DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]

              SeedRandom[0]; (* to make a reproducible 1000 x 1000 matrix *)
              foo = Nest[RandomInteger[1, {1000, 1000}] # &, 1, 9];

              d1 = Cases[positionDuplicates[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.017, Null} *)

              d2 = Cases[posDupes[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.060, Null} *)

              d1 == d2
              (* True *)

              d1
              (*
              {{25, 75, 291, 355, 356, 425, 475, 518, 547, 668, 670, 750, 777},
              {173, 516}, {544, 816}, {610, 720}}
              *)





              share|improve this answer









              $endgroup$









              • 1




                $begingroup$
                Cases[Values[PositionIndex[M]], dupe_ /; Length[dupe] > 1] is faster than positionDuplicates
                $endgroup$
                – Okkes Dulgerci
                Apr 26 at 1:41










              • $begingroup$
                @OkkesDulgerci Yes, it is for me, too, in V12. My main point is that the solution to this question has been given in another Q&A. See this answer for the PositionIndex solutoin.
                $endgroup$
                – Michael E2
                Apr 26 at 1:44








              • 3




                $begingroup$
                @OkkesDulgerci It's interesting that PositionIndex outperforms positionDuplicates on a list of lists, because it is still much slower on a list of integers.
                $endgroup$
                – Michael E2
                Apr 26 at 1:53














              6












              6








              6





              $begingroup$

              The function positionDuplicates from How to efficiently find positions of duplicates? does the job, faster than Nearest.



              (* Henrik's method *)
              posDupes[M_] := DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]

              SeedRandom[0]; (* to make a reproducible 1000 x 1000 matrix *)
              foo = Nest[RandomInteger[1, {1000, 1000}] # &, 1, 9];

              d1 = Cases[positionDuplicates[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.017, Null} *)

              d2 = Cases[posDupes[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.060, Null} *)

              d1 == d2
              (* True *)

              d1
              (*
              {{25, 75, 291, 355, 356, 425, 475, 518, 547, 668, 670, 750, 777},
              {173, 516}, {544, 816}, {610, 720}}
              *)





              share|improve this answer









              $endgroup$



              The function positionDuplicates from How to efficiently find positions of duplicates? does the job, faster than Nearest.



              (* Henrik's method *)
              posDupes[M_] := DeleteDuplicates[Sort /@ Nearest[M -> Automatic, M, {∞, 0}]]

              SeedRandom[0]; (* to make a reproducible 1000 x 1000 matrix *)
              foo = Nest[RandomInteger[1, {1000, 1000}] # &, 1, 9];

              d1 = Cases[positionDuplicates[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.017, Null} *)

              d2 = Cases[posDupes[foo], dupe_ /; Length[dupe] > 1]; // RepeatedTiming
              (* {0.060, Null} *)

              d1 == d2
              (* True *)

              d1
              (*
              {{25, 75, 291, 355, 356, 425, 475, 518, 547, 668, 670, 750, 777},
              {173, 516}, {544, 816}, {610, 720}}
              *)






              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered Apr 26 at 0:28









              Michael E2Michael E2

              153k12208495




              153k12208495








              • 1




                $begingroup$
                Cases[Values[PositionIndex[M]], dupe_ /; Length[dupe] > 1] is faster than positionDuplicates
                $endgroup$
                – Okkes Dulgerci
                Apr 26 at 1:41










              • $begingroup$
                @OkkesDulgerci Yes, it is for me, too, in V12. My main point is that the solution to this question has been given in another Q&A. See this answer for the PositionIndex solutoin.
                $endgroup$
                – Michael E2
                Apr 26 at 1:44








              • 3




                $begingroup$
                @OkkesDulgerci It's interesting that PositionIndex outperforms positionDuplicates on a list of lists, because it is still much slower on a list of integers.
                $endgroup$
                – Michael E2
                Apr 26 at 1:53














              • 1




                $begingroup$
                Cases[Values[PositionIndex[M]], dupe_ /; Length[dupe] > 1] is faster than positionDuplicates
                $endgroup$
                – Okkes Dulgerci
                Apr 26 at 1:41










              • $begingroup$
                @OkkesDulgerci Yes, it is for me, too, in V12. My main point is that the solution to this question has been given in another Q&A. See this answer for the PositionIndex solutoin.
                $endgroup$
                – Michael E2
                Apr 26 at 1:44








              • 3




                $begingroup$
                @OkkesDulgerci It's interesting that PositionIndex outperforms positionDuplicates on a list of lists, because it is still much slower on a list of integers.
                $endgroup$
                – Michael E2
                Apr 26 at 1:53








              1




              1




              $begingroup$
              Cases[Values[PositionIndex[M]], dupe_ /; Length[dupe] > 1] is faster than positionDuplicates
              $endgroup$
              – Okkes Dulgerci
              Apr 26 at 1:41




              $begingroup$
              Cases[Values[PositionIndex[M]], dupe_ /; Length[dupe] > 1] is faster than positionDuplicates
              $endgroup$
              – Okkes Dulgerci
              Apr 26 at 1:41












              $begingroup$
              @OkkesDulgerci Yes, it is for me, too, in V12. My main point is that the solution to this question has been given in another Q&A. See this answer for the PositionIndex solutoin.
              $endgroup$
              – Michael E2
              Apr 26 at 1:44






              $begingroup$
              @OkkesDulgerci Yes, it is for me, too, in V12. My main point is that the solution to this question has been given in another Q&A. See this answer for the PositionIndex solutoin.
              $endgroup$
              – Michael E2
              Apr 26 at 1:44






              3




              3




              $begingroup$
              @OkkesDulgerci It's interesting that PositionIndex outperforms positionDuplicates on a list of lists, because it is still much slower on a list of integers.
              $endgroup$
              – Michael E2
              Apr 26 at 1:53




              $begingroup$
              @OkkesDulgerci It's interesting that PositionIndex outperforms positionDuplicates on a list of lists, because it is still much slower on a list of integers.
              $endgroup$
              – Michael E2
              Apr 26 at 1:53











              3












              $begingroup$

              While this question repeats a previous query about finding DuplicatePositions, the duplicates here are amongst a list of binary vectors in contrast to the original duplicates occurring amongst a list of numbers. As illustrated in an answer to the original query however, the type, depth and distribution of inputs can significantly impact efficiency so there may well be further optimizations specific to this case of finding duplicates amongst binary vectors. The following summarises timings of the "superfunction" DuplicatePositions (collected and defined from answers to the original question - in particular Szabolcs, Carl Woll and Mr.Wizard), postionDuplicates (the fastest solutions for numbers from Szabolcs) and a tweeking in the "UseGatherByLocalMap" Method option (from Carl Woll), the accepted groupBy answer (by Roman) and the nearest answer (by Henrik Schumacher) for various types of binary vectors. I've contributed the "UseOrdering" Method in DuplicatePositions.



              duplicatePositionsByOrdering[ls_]:= SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First]


              which seems to do well for sparse vectors (a more succinct version of similar ideas used by Mr.Wizard and Leonid Shifrin in their anwers). Note that a random 1000x1000 binary matrix is very likely to be sparse to the point of no (row) duplicates occurring so presumably in the OP's situation the authentic data is not randomly generated and instead includes manufactured repeats. To the timings (the tag function just puts in the S1, S2 ... tags as originally requested and the tick indicates identical output):



              enter image description here



              Obviously timings aren't everything as short-clear functions can often be preferable (as well as potentially being more efficient for different inputs) but it can also sometimes be illuminating--here for example, indicating that GroupBy seems to recognize order for ragged vectors unlike GatherBy.



              The code for the above output is below



              SetAttributes[benchmark, HoldAll];

              benchmark[functions_, opts : OptionsPattern] :=
              Function[input, benchmark[functions, input, opts], HoldAll];

              benchmark[functions_, input_, OptionsPattern] := Module[{
              tm = Function[fn,
              Function[x, <|ToString[fn] -> RepeatedTiming@fn@x|>]],
              timesOutputs, times},
              SeedRandom@0;
              timesOutputs = Through[(tm /@ functions)@input];
              times =
              SortBy[Query[All, All, First]@timesOutputs, Last] // Dataset;
              If[OptionValue@"CheckOutputs",
              Labeled[times,
              Row[{ToString@Unevaluated@input, Spacer@80,
              If[SameQ @@ (Query[All, Last, 2]@timesOutputs),
              Style["[Checkmark]", Green, 20], Style["x", Red, 20]]}],
              Top], times]
              ];

              Options[benchmark] = {"CheckOutputs" -> True};

              Options[DuplicatePositions] = {Method -> Automatic};

              DuplicatePositions[ls_, OptionsPattern] :=
              With[{method = OptionValue[Method]},
              Switch[method,
              "UseGatherBy", GatherBy[Range@Length@ls, ls[[#]] &],
              "UsePositionIndex", Values@PositionIndex@ls,
              "UseOrdering", SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First],
              "UseGatherByLocalMap", Module[{func}, func /: Map[func, _] := ls;
              GatherBy[Range@Length@ls, func]],
              Automatic, Which[
              ArrayQ[ls, 1, NumericQ],
              DuplicatePositions[ls, "Method" -> "UseGatherBy" ],
              ArrayQ[ls, 2, NumericQ], DuplicatePositionsBy[ls, FromDigits],
              MatchQ[{{_?IntegerQ ..} ..}]@ls,
              DuplicatePositionsBy[ls, FromDigits],
              True, DuplicatePositions[ls, Method -> "UsePositionIndex" ]
              ]]];

              DuplicatePositionsBy[ls_, fn_, opts : OptionsPattern] :=
              DuplicatePositions[fn /@ ls, opts];

              tag = Map["S" <> ToString@# &, #, {-1}] &;
              positionDuplicates[ls_] := GatherBy[Range@Length@ls, ls[[#]] &];
              groupBy[M_] := With[
              {rownames = Array["S" <> ToString[#] &, Length[M]]},
              Values@GroupBy[Thread[rownames -> M], Last -> First]];
              nearest[M_] :=
              DeleteDuplicates[
              Sort /@ Nearest[M -> Automatic, M, {[Infinity], 0}]];
              n = 10^4;
              binaryVectors50k =
              IntegerDigits[#, 2, 13] & /@ RandomInteger[n, 5*n];
              fns = {
              groupBy,
              (nearest@# // tag) &,
              (DuplicatePositions@# // tag) &,
              (DuplicatePositionsBy[#, FromDigits[#, 2] &,
              Method -> "UseGatherByLocalMap"] // tag) &,
              (positionDuplicates@# // tag) &
              };
              benchmark[fns]@binaryVectors50k
              n = 10^3;
              binaryVectorsRagged5k = IntegerDigits[#, 2] & /@ RandomInteger[n, 5*n];
              fns = {
              groupBy,
              (DuplicatePositions@# // tag) &,
              (DuplicatePositionsBy[#, FromDigits[#, 2] &,
              Method -> "UseGatherByLocalMap"] // tag) &,
              (positionDuplicates@# // tag) &
              };
              benchmark[fns]@binaryVectorsRagged5k

              n = 10^4;
              binaryVectorsSparse10k := RandomInteger[1, {n, n}];
              fns = {
              (DuplicatePositions@# // tag) &,
              (positionDuplicates@# // tag) &,
              (DuplicatePositions[#, Method -> "UseOrdering"] // tag) &,
              groupBy};
              benchmark[fns]@binaryVectorsSparse10k





              share|improve this answer











              $endgroup$


















                3












                $begingroup$

                While this question repeats a previous query about finding DuplicatePositions, the duplicates here are amongst a list of binary vectors in contrast to the original duplicates occurring amongst a list of numbers. As illustrated in an answer to the original query however, the type, depth and distribution of inputs can significantly impact efficiency so there may well be further optimizations specific to this case of finding duplicates amongst binary vectors. The following summarises timings of the "superfunction" DuplicatePositions (collected and defined from answers to the original question - in particular Szabolcs, Carl Woll and Mr.Wizard), postionDuplicates (the fastest solutions for numbers from Szabolcs) and a tweeking in the "UseGatherByLocalMap" Method option (from Carl Woll), the accepted groupBy answer (by Roman) and the nearest answer (by Henrik Schumacher) for various types of binary vectors. I've contributed the "UseOrdering" Method in DuplicatePositions.



                duplicatePositionsByOrdering[ls_]:= SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First]


                which seems to do well for sparse vectors (a more succinct version of similar ideas used by Mr.Wizard and Leonid Shifrin in their anwers). Note that a random 1000x1000 binary matrix is very likely to be sparse to the point of no (row) duplicates occurring so presumably in the OP's situation the authentic data is not randomly generated and instead includes manufactured repeats. To the timings (the tag function just puts in the S1, S2 ... tags as originally requested and the tick indicates identical output):



                enter image description here



                Obviously timings aren't everything as short-clear functions can often be preferable (as well as potentially being more efficient for different inputs) but it can also sometimes be illuminating--here for example, indicating that GroupBy seems to recognize order for ragged vectors unlike GatherBy.



                The code for the above output is below



                SetAttributes[benchmark, HoldAll];

                benchmark[functions_, opts : OptionsPattern] :=
                Function[input, benchmark[functions, input, opts], HoldAll];

                benchmark[functions_, input_, OptionsPattern] := Module[{
                tm = Function[fn,
                Function[x, <|ToString[fn] -> RepeatedTiming@fn@x|>]],
                timesOutputs, times},
                SeedRandom@0;
                timesOutputs = Through[(tm /@ functions)@input];
                times =
                SortBy[Query[All, All, First]@timesOutputs, Last] // Dataset;
                If[OptionValue@"CheckOutputs",
                Labeled[times,
                Row[{ToString@Unevaluated@input, Spacer@80,
                If[SameQ @@ (Query[All, Last, 2]@timesOutputs),
                Style["[Checkmark]", Green, 20], Style["x", Red, 20]]}],
                Top], times]
                ];

                Options[benchmark] = {"CheckOutputs" -> True};

                Options[DuplicatePositions] = {Method -> Automatic};

                DuplicatePositions[ls_, OptionsPattern] :=
                With[{method = OptionValue[Method]},
                Switch[method,
                "UseGatherBy", GatherBy[Range@Length@ls, ls[[#]] &],
                "UsePositionIndex", Values@PositionIndex@ls,
                "UseOrdering", SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First],
                "UseGatherByLocalMap", Module[{func}, func /: Map[func, _] := ls;
                GatherBy[Range@Length@ls, func]],
                Automatic, Which[
                ArrayQ[ls, 1, NumericQ],
                DuplicatePositions[ls, "Method" -> "UseGatherBy" ],
                ArrayQ[ls, 2, NumericQ], DuplicatePositionsBy[ls, FromDigits],
                MatchQ[{{_?IntegerQ ..} ..}]@ls,
                DuplicatePositionsBy[ls, FromDigits],
                True, DuplicatePositions[ls, Method -> "UsePositionIndex" ]
                ]]];

                DuplicatePositionsBy[ls_, fn_, opts : OptionsPattern] :=
                DuplicatePositions[fn /@ ls, opts];

                tag = Map["S" <> ToString@# &, #, {-1}] &;
                positionDuplicates[ls_] := GatherBy[Range@Length@ls, ls[[#]] &];
                groupBy[M_] := With[
                {rownames = Array["S" <> ToString[#] &, Length[M]]},
                Values@GroupBy[Thread[rownames -> M], Last -> First]];
                nearest[M_] :=
                DeleteDuplicates[
                Sort /@ Nearest[M -> Automatic, M, {[Infinity], 0}]];
                n = 10^4;
                binaryVectors50k =
                IntegerDigits[#, 2, 13] & /@ RandomInteger[n, 5*n];
                fns = {
                groupBy,
                (nearest@# // tag) &,
                (DuplicatePositions@# // tag) &,
                (DuplicatePositionsBy[#, FromDigits[#, 2] &,
                Method -> "UseGatherByLocalMap"] // tag) &,
                (positionDuplicates@# // tag) &
                };
                benchmark[fns]@binaryVectors50k
                n = 10^3;
                binaryVectorsRagged5k = IntegerDigits[#, 2] & /@ RandomInteger[n, 5*n];
                fns = {
                groupBy,
                (DuplicatePositions@# // tag) &,
                (DuplicatePositionsBy[#, FromDigits[#, 2] &,
                Method -> "UseGatherByLocalMap"] // tag) &,
                (positionDuplicates@# // tag) &
                };
                benchmark[fns]@binaryVectorsRagged5k

                n = 10^4;
                binaryVectorsSparse10k := RandomInteger[1, {n, n}];
                fns = {
                (DuplicatePositions@# // tag) &,
                (positionDuplicates@# // tag) &,
                (DuplicatePositions[#, Method -> "UseOrdering"] // tag) &,
                groupBy};
                benchmark[fns]@binaryVectorsSparse10k





                share|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  While this question repeats a previous query about finding DuplicatePositions, the duplicates here are amongst a list of binary vectors in contrast to the original duplicates occurring amongst a list of numbers. As illustrated in an answer to the original query however, the type, depth and distribution of inputs can significantly impact efficiency so there may well be further optimizations specific to this case of finding duplicates amongst binary vectors. The following summarises timings of the "superfunction" DuplicatePositions (collected and defined from answers to the original question - in particular Szabolcs, Carl Woll and Mr.Wizard), postionDuplicates (the fastest solutions for numbers from Szabolcs) and a tweeking in the "UseGatherByLocalMap" Method option (from Carl Woll), the accepted groupBy answer (by Roman) and the nearest answer (by Henrik Schumacher) for various types of binary vectors. I've contributed the "UseOrdering" Method in DuplicatePositions.



                  duplicatePositionsByOrdering[ls_]:= SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First]


                  which seems to do well for sparse vectors (a more succinct version of similar ideas used by Mr.Wizard and Leonid Shifrin in their anwers). Note that a random 1000x1000 binary matrix is very likely to be sparse to the point of no (row) duplicates occurring so presumably in the OP's situation the authentic data is not randomly generated and instead includes manufactured repeats. To the timings (the tag function just puts in the S1, S2 ... tags as originally requested and the tick indicates identical output):



                  enter image description here



                  Obviously timings aren't everything as short-clear functions can often be preferable (as well as potentially being more efficient for different inputs) but it can also sometimes be illuminating--here for example, indicating that GroupBy seems to recognize order for ragged vectors unlike GatherBy.



                  The code for the above output is below



                  SetAttributes[benchmark, HoldAll];

                  benchmark[functions_, opts : OptionsPattern] :=
                  Function[input, benchmark[functions, input, opts], HoldAll];

                  benchmark[functions_, input_, OptionsPattern] := Module[{
                  tm = Function[fn,
                  Function[x, <|ToString[fn] -> RepeatedTiming@fn@x|>]],
                  timesOutputs, times},
                  SeedRandom@0;
                  timesOutputs = Through[(tm /@ functions)@input];
                  times =
                  SortBy[Query[All, All, First]@timesOutputs, Last] // Dataset;
                  If[OptionValue@"CheckOutputs",
                  Labeled[times,
                  Row[{ToString@Unevaluated@input, Spacer@80,
                  If[SameQ @@ (Query[All, Last, 2]@timesOutputs),
                  Style["[Checkmark]", Green, 20], Style["x", Red, 20]]}],
                  Top], times]
                  ];

                  Options[benchmark] = {"CheckOutputs" -> True};

                  Options[DuplicatePositions] = {Method -> Automatic};

                  DuplicatePositions[ls_, OptionsPattern] :=
                  With[{method = OptionValue[Method]},
                  Switch[method,
                  "UseGatherBy", GatherBy[Range@Length@ls, ls[[#]] &],
                  "UsePositionIndex", Values@PositionIndex@ls,
                  "UseOrdering", SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First],
                  "UseGatherByLocalMap", Module[{func}, func /: Map[func, _] := ls;
                  GatherBy[Range@Length@ls, func]],
                  Automatic, Which[
                  ArrayQ[ls, 1, NumericQ],
                  DuplicatePositions[ls, "Method" -> "UseGatherBy" ],
                  ArrayQ[ls, 2, NumericQ], DuplicatePositionsBy[ls, FromDigits],
                  MatchQ[{{_?IntegerQ ..} ..}]@ls,
                  DuplicatePositionsBy[ls, FromDigits],
                  True, DuplicatePositions[ls, Method -> "UsePositionIndex" ]
                  ]]];

                  DuplicatePositionsBy[ls_, fn_, opts : OptionsPattern] :=
                  DuplicatePositions[fn /@ ls, opts];

                  tag = Map["S" <> ToString@# &, #, {-1}] &;
                  positionDuplicates[ls_] := GatherBy[Range@Length@ls, ls[[#]] &];
                  groupBy[M_] := With[
                  {rownames = Array["S" <> ToString[#] &, Length[M]]},
                  Values@GroupBy[Thread[rownames -> M], Last -> First]];
                  nearest[M_] :=
                  DeleteDuplicates[
                  Sort /@ Nearest[M -> Automatic, M, {[Infinity], 0}]];
                  n = 10^4;
                  binaryVectors50k =
                  IntegerDigits[#, 2, 13] & /@ RandomInteger[n, 5*n];
                  fns = {
                  groupBy,
                  (nearest@# // tag) &,
                  (DuplicatePositions@# // tag) &,
                  (DuplicatePositionsBy[#, FromDigits[#, 2] &,
                  Method -> "UseGatherByLocalMap"] // tag) &,
                  (positionDuplicates@# // tag) &
                  };
                  benchmark[fns]@binaryVectors50k
                  n = 10^3;
                  binaryVectorsRagged5k = IntegerDigits[#, 2] & /@ RandomInteger[n, 5*n];
                  fns = {
                  groupBy,
                  (DuplicatePositions@# // tag) &,
                  (DuplicatePositionsBy[#, FromDigits[#, 2] &,
                  Method -> "UseGatherByLocalMap"] // tag) &,
                  (positionDuplicates@# // tag) &
                  };
                  benchmark[fns]@binaryVectorsRagged5k

                  n = 10^4;
                  binaryVectorsSparse10k := RandomInteger[1, {n, n}];
                  fns = {
                  (DuplicatePositions@# // tag) &,
                  (positionDuplicates@# // tag) &,
                  (DuplicatePositions[#, Method -> "UseOrdering"] // tag) &,
                  groupBy};
                  benchmark[fns]@binaryVectorsSparse10k





                  share|improve this answer











                  $endgroup$



                  While this question repeats a previous query about finding DuplicatePositions, the duplicates here are amongst a list of binary vectors in contrast to the original duplicates occurring amongst a list of numbers. As illustrated in an answer to the original query however, the type, depth and distribution of inputs can significantly impact efficiency so there may well be further optimizations specific to this case of finding duplicates amongst binary vectors. The following summarises timings of the "superfunction" DuplicatePositions (collected and defined from answers to the original question - in particular Szabolcs, Carl Woll and Mr.Wizard), postionDuplicates (the fastest solutions for numbers from Szabolcs) and a tweeking in the "UseGatherByLocalMap" Method option (from Carl Woll), the accepted groupBy answer (by Roman) and the nearest answer (by Henrik Schumacher) for various types of binary vectors. I've contributed the "UseOrdering" Method in DuplicatePositions.



                  duplicatePositionsByOrdering[ls_]:= SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First]


                  which seems to do well for sparse vectors (a more succinct version of similar ideas used by Mr.Wizard and Leonid Shifrin in their anwers). Note that a random 1000x1000 binary matrix is very likely to be sparse to the point of no (row) duplicates occurring so presumably in the OP's situation the authentic data is not randomly generated and instead includes manufactured repeats. To the timings (the tag function just puts in the S1, S2 ... tags as originally requested and the tick indicates identical output):



                  enter image description here



                  Obviously timings aren't everything as short-clear functions can often be preferable (as well as potentially being more efficient for different inputs) but it can also sometimes be illuminating--here for example, indicating that GroupBy seems to recognize order for ragged vectors unlike GatherBy.



                  The code for the above output is below



                  SetAttributes[benchmark, HoldAll];

                  benchmark[functions_, opts : OptionsPattern] :=
                  Function[input, benchmark[functions, input, opts], HoldAll];

                  benchmark[functions_, input_, OptionsPattern] := Module[{
                  tm = Function[fn,
                  Function[x, <|ToString[fn] -> RepeatedTiming@fn@x|>]],
                  timesOutputs, times},
                  SeedRandom@0;
                  timesOutputs = Through[(tm /@ functions)@input];
                  times =
                  SortBy[Query[All, All, First]@timesOutputs, Last] // Dataset;
                  If[OptionValue@"CheckOutputs",
                  Labeled[times,
                  Row[{ToString@Unevaluated@input, Spacer@80,
                  If[SameQ @@ (Query[All, Last, 2]@timesOutputs),
                  Style["[Checkmark]", Green, 20], Style["x", Red, 20]]}],
                  Top], times]
                  ];

                  Options[benchmark] = {"CheckOutputs" -> True};

                  Options[DuplicatePositions] = {Method -> Automatic};

                  DuplicatePositions[ls_, OptionsPattern] :=
                  With[{method = OptionValue[Method]},
                  Switch[method,
                  "UseGatherBy", GatherBy[Range@Length@ls, ls[[#]] &],
                  "UsePositionIndex", Values@PositionIndex@ls,
                  "UseOrdering", SplitBy[Ordering@ls, ls[[#]] &] // SortBy[First],
                  "UseGatherByLocalMap", Module[{func}, func /: Map[func, _] := ls;
                  GatherBy[Range@Length@ls, func]],
                  Automatic, Which[
                  ArrayQ[ls, 1, NumericQ],
                  DuplicatePositions[ls, "Method" -> "UseGatherBy" ],
                  ArrayQ[ls, 2, NumericQ], DuplicatePositionsBy[ls, FromDigits],
                  MatchQ[{{_?IntegerQ ..} ..}]@ls,
                  DuplicatePositionsBy[ls, FromDigits],
                  True, DuplicatePositions[ls, Method -> "UsePositionIndex" ]
                  ]]];

                  DuplicatePositionsBy[ls_, fn_, opts : OptionsPattern] :=
                  DuplicatePositions[fn /@ ls, opts];

                  tag = Map["S" <> ToString@# &, #, {-1}] &;
                  positionDuplicates[ls_] := GatherBy[Range@Length@ls, ls[[#]] &];
                  groupBy[M_] := With[
                  {rownames = Array["S" <> ToString[#] &, Length[M]]},
                  Values@GroupBy[Thread[rownames -> M], Last -> First]];
                  nearest[M_] :=
                  DeleteDuplicates[
                  Sort /@ Nearest[M -> Automatic, M, {[Infinity], 0}]];
                  n = 10^4;
                  binaryVectors50k =
                  IntegerDigits[#, 2, 13] & /@ RandomInteger[n, 5*n];
                  fns = {
                  groupBy,
                  (nearest@# // tag) &,
                  (DuplicatePositions@# // tag) &,
                  (DuplicatePositionsBy[#, FromDigits[#, 2] &,
                  Method -> "UseGatherByLocalMap"] // tag) &,
                  (positionDuplicates@# // tag) &
                  };
                  benchmark[fns]@binaryVectors50k
                  n = 10^3;
                  binaryVectorsRagged5k = IntegerDigits[#, 2] & /@ RandomInteger[n, 5*n];
                  fns = {
                  groupBy,
                  (DuplicatePositions@# // tag) &,
                  (DuplicatePositionsBy[#, FromDigits[#, 2] &,
                  Method -> "UseGatherByLocalMap"] // tag) &,
                  (positionDuplicates@# // tag) &
                  };
                  benchmark[fns]@binaryVectorsRagged5k

                  n = 10^4;
                  binaryVectorsSparse10k := RandomInteger[1, {n, n}];
                  fns = {
                  (DuplicatePositions@# // tag) &,
                  (positionDuplicates@# // tag) &,
                  (DuplicatePositions[#, Method -> "UseOrdering"] // tag) &,
                  groupBy};
                  benchmark[fns]@binaryVectorsSparse10k






                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited May 8 at 23:08

























                  answered Apr 26 at 13:40









                  Ronald MonsonRonald Monson

                  3,2331735




                  3,2331735















                      Popular posts from this blog

                      Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

                      Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                      He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome