Embeddings of flag manifoldsDo symmetric spaces admit isometric embeddings as intersections of quadrics?Riemannian metric on a flag varietyEquivariant Almost Complex Structures on the Full Flag ManifoldsIs there a complex surface into which every Riemann surface embeds?Is there an algebraic way to characterise the ordinary integral flags?When is the determinant an $8$-th power?Topological Invariance of Chow VarietiesDegree of the projection of a projective varietyThe isometry groups of flag manifoldsDegree of Varieties and Segre's Embedding

Embeddings of flag manifolds


Do symmetric spaces admit isometric embeddings as intersections of quadrics?Riemannian metric on a flag varietyEquivariant Almost Complex Structures on the Full Flag ManifoldsIs there a complex surface into which every Riemann surface embeds?Is there an algebraic way to characterise the ordinary integral flags?When is the determinant an $8$-th power?Topological Invariance of Chow VarietiesDegree of the projection of a projective varietyThe isometry groups of flag manifoldsDegree of Varieties and Segre's Embedding













7












$begingroup$


Consider the flag manifold $mathbbF(a_1,dots,a_k)$ parametrizing flags of type $F^a_1subseteqdotssubseteq F^a_ksubseteq V$ in a vector spaces $V$ of dimension $n+1$, where $F^a_i$ is a sub-vector space of dimension $a_i$.



Then $mathbbF(a_1,dots,a_k)$ embeds in the product of Grassmannians $G(a_1,V)timesdotstimes G(a_k,V)$ which in turn embeds in $mathbbP^N_1timesdotstimesmathbbP^N_k$ via the product of the Plücker embeddings. Now we can embed $mathbbP^N_1timesdotstimesmathbbP^N_k$ in a projective space $mathbbP^N$ via the Segre embedding.



Finally, we get an embedding $mathbbF(a_1,dots,a_k)hookrightarrowmathbbP^N$. Is this embedding the minimal rational homogeneous embedding of $mathbbF(a_1,dots,a_k)$?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    What @VictorPetrov writes is completely correct. I just want to clarify one point. When you write "minimal", do you mean that the dimension of the projective space is minimal, or do you mean that the ample cone is the translate of the nef cone by the divisor class of this embedding (the embedding is the "vertex" of the ample cone)?
    $endgroup$
    – Jason Starr
    yesterday















7












$begingroup$


Consider the flag manifold $mathbbF(a_1,dots,a_k)$ parametrizing flags of type $F^a_1subseteqdotssubseteq F^a_ksubseteq V$ in a vector spaces $V$ of dimension $n+1$, where $F^a_i$ is a sub-vector space of dimension $a_i$.



Then $mathbbF(a_1,dots,a_k)$ embeds in the product of Grassmannians $G(a_1,V)timesdotstimes G(a_k,V)$ which in turn embeds in $mathbbP^N_1timesdotstimesmathbbP^N_k$ via the product of the Plücker embeddings. Now we can embed $mathbbP^N_1timesdotstimesmathbbP^N_k$ in a projective space $mathbbP^N$ via the Segre embedding.



Finally, we get an embedding $mathbbF(a_1,dots,a_k)hookrightarrowmathbbP^N$. Is this embedding the minimal rational homogeneous embedding of $mathbbF(a_1,dots,a_k)$?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    What @VictorPetrov writes is completely correct. I just want to clarify one point. When you write "minimal", do you mean that the dimension of the projective space is minimal, or do you mean that the ample cone is the translate of the nef cone by the divisor class of this embedding (the embedding is the "vertex" of the ample cone)?
    $endgroup$
    – Jason Starr
    yesterday













7












7








7





$begingroup$


Consider the flag manifold $mathbbF(a_1,dots,a_k)$ parametrizing flags of type $F^a_1subseteqdotssubseteq F^a_ksubseteq V$ in a vector spaces $V$ of dimension $n+1$, where $F^a_i$ is a sub-vector space of dimension $a_i$.



Then $mathbbF(a_1,dots,a_k)$ embeds in the product of Grassmannians $G(a_1,V)timesdotstimes G(a_k,V)$ which in turn embeds in $mathbbP^N_1timesdotstimesmathbbP^N_k$ via the product of the Plücker embeddings. Now we can embed $mathbbP^N_1timesdotstimesmathbbP^N_k$ in a projective space $mathbbP^N$ via the Segre embedding.



Finally, we get an embedding $mathbbF(a_1,dots,a_k)hookrightarrowmathbbP^N$. Is this embedding the minimal rational homogeneous embedding of $mathbbF(a_1,dots,a_k)$?










share|cite|improve this question











$endgroup$




Consider the flag manifold $mathbbF(a_1,dots,a_k)$ parametrizing flags of type $F^a_1subseteqdotssubseteq F^a_ksubseteq V$ in a vector spaces $V$ of dimension $n+1$, where $F^a_i$ is a sub-vector space of dimension $a_i$.



Then $mathbbF(a_1,dots,a_k)$ embeds in the product of Grassmannians $G(a_1,V)timesdotstimes G(a_k,V)$ which in turn embeds in $mathbbP^N_1timesdotstimesmathbbP^N_k$ via the product of the Plücker embeddings. Now we can embed $mathbbP^N_1timesdotstimesmathbbP^N_k$ in a projective space $mathbbP^N$ via the Segre embedding.



Finally, we get an embedding $mathbbF(a_1,dots,a_k)hookrightarrowmathbbP^N$. Is this embedding the minimal rational homogeneous embedding of $mathbbF(a_1,dots,a_k)$?







ag.algebraic-geometry projective-geometry homogeneous-spaces flag-varieties embeddings






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Michael Albanese

7,71655293




7,71655293










asked yesterday









gxggxg

1538




1538







  • 2




    $begingroup$
    What @VictorPetrov writes is completely correct. I just want to clarify one point. When you write "minimal", do you mean that the dimension of the projective space is minimal, or do you mean that the ample cone is the translate of the nef cone by the divisor class of this embedding (the embedding is the "vertex" of the ample cone)?
    $endgroup$
    – Jason Starr
    yesterday












  • 2




    $begingroup$
    What @VictorPetrov writes is completely correct. I just want to clarify one point. When you write "minimal", do you mean that the dimension of the projective space is minimal, or do you mean that the ample cone is the translate of the nef cone by the divisor class of this embedding (the embedding is the "vertex" of the ample cone)?
    $endgroup$
    – Jason Starr
    yesterday







2




2




$begingroup$
What @VictorPetrov writes is completely correct. I just want to clarify one point. When you write "minimal", do you mean that the dimension of the projective space is minimal, or do you mean that the ample cone is the translate of the nef cone by the divisor class of this embedding (the embedding is the "vertex" of the ample cone)?
$endgroup$
– Jason Starr
yesterday




$begingroup$
What @VictorPetrov writes is completely correct. I just want to clarify one point. When you write "minimal", do you mean that the dimension of the projective space is minimal, or do you mean that the ample cone is the translate of the nef cone by the divisor class of this embedding (the embedding is the "vertex" of the ample cone)?
$endgroup$
– Jason Starr
yesterday










1 Answer
1






active

oldest

votes


















8












$begingroup$

In general there is a more efficient way: $a_1,ldots,a_k$ determines a Young diagram, and you can realize the flag variety as the stabilizer of a point in the unique closed orbit of $mathbb P(U)$, where $U$ is the representation of $GL(V)$ corresponding to this diagram. Its dimension is given by the "hook formula".






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325605%2fembeddings-of-flag-manifolds%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    In general there is a more efficient way: $a_1,ldots,a_k$ determines a Young diagram, and you can realize the flag variety as the stabilizer of a point in the unique closed orbit of $mathbb P(U)$, where $U$ is the representation of $GL(V)$ corresponding to this diagram. Its dimension is given by the "hook formula".






    share|cite|improve this answer









    $endgroup$

















      8












      $begingroup$

      In general there is a more efficient way: $a_1,ldots,a_k$ determines a Young diagram, and you can realize the flag variety as the stabilizer of a point in the unique closed orbit of $mathbb P(U)$, where $U$ is the representation of $GL(V)$ corresponding to this diagram. Its dimension is given by the "hook formula".






      share|cite|improve this answer









      $endgroup$















        8












        8








        8





        $begingroup$

        In general there is a more efficient way: $a_1,ldots,a_k$ determines a Young diagram, and you can realize the flag variety as the stabilizer of a point in the unique closed orbit of $mathbb P(U)$, where $U$ is the representation of $GL(V)$ corresponding to this diagram. Its dimension is given by the "hook formula".






        share|cite|improve this answer









        $endgroup$



        In general there is a more efficient way: $a_1,ldots,a_k$ determines a Young diagram, and you can realize the flag variety as the stabilizer of a point in the unique closed orbit of $mathbb P(U)$, where $U$ is the representation of $GL(V)$ corresponding to this diagram. Its dimension is given by the "hook formula".







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        Victor PetrovVictor Petrov

        1,23968




        1,23968



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325605%2fembeddings-of-flag-manifolds%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

            Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

            He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome