Non-trivial topology where only open sets are closedExhaustion of open sets by closed setsNatural non-trivial topology on $mathbb R$ such that there are more than $2^mathbb N$ open setswhy use open interval rather than closed interval as open sets for real line topologyA non-trivial Hausdorff topology on XClosed sets in Noetherian topologyIn the finite complement topology on $mathbbR$, is the subset $ x $ closed?Are closed sets in topology?For which topologies are the concepts of open and closed “interchangeable”?How to determine which sets are open in a topology?Inclusion of open sets in closed sets of Zariski topology

Improve appearance of matrices as arrow labels in tikz-cd

What kind of footwear is suitable for walking in micro gravity environment?

Does convergence of polynomials imply that of its coefficients?

How can an organ that provides biological immortality be unable to regenerate?

Inhabiting Mars versus going straight for a Dyson swarm

Exit shell with shortcut (not typing exit) that closes session properly

Unfrosted light bulb

Why is "la Gestapo" feminine?

Pre-Employment Background Check With Consent For Future Checks

What will the french man say?

PTIJ: Which Dr. Seuss books should one obtain?

Air travel with refrigerated insulin

TDE Master Key Rotation

The English Debate

is this saw blade faulty?

Make the largest box from a cardboard sheet

Mishloach Manot - why the word Mishloach is used specifically

How can I query the supported timezones in Apex?

Does fire aspect on a sword, destroy mob drops?

Why are there no stars visible in cislunar space?

What is the difference between something being completely legal and being completely decriminalized?

CLI: Get information Ubuntu releases

Do I need an EFI partition for each 18.04 ubuntu I have on my HD?

What is the reasoning behind standardization (dividing by standard deviation)?



Non-trivial topology where only open sets are closed


Exhaustion of open sets by closed setsNatural non-trivial topology on $mathbb R$ such that there are more than $2^mathbb N$ open setswhy use open interval rather than closed interval as open sets for real line topologyA non-trivial Hausdorff topology on XClosed sets in Noetherian topologyIn the finite complement topology on $mathbbR$, is the subset $ x $ closed?Are closed sets in topology?For which topologies are the concepts of open and closed “interchangeable”?How to determine which sets are open in a topology?Inclusion of open sets in closed sets of Zariski topology













5












$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday















5












$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday













5












5








5


1



$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$




For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.







general-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









YuiTo Cheng

2,0592637




2,0592637










asked yesterday









ThomThom

361111




361111







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday












  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday







2




2




$begingroup$
The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
$endgroup$
– parsiad
yesterday




$begingroup$
The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
$endgroup$
– parsiad
yesterday




2




2




$begingroup$
(1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
$endgroup$
– Arturo Magidin
yesterday




$begingroup$
(1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
$endgroup$
– Arturo Magidin
yesterday




2




2




$begingroup$
Related to your question are door spaces and extremally disconnected spaces.
$endgroup$
– William Elliot
yesterday




$begingroup$
Related to your question are door spaces and extremally disconnected spaces.
$endgroup$
– William Elliot
yesterday












$begingroup$
As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
$endgroup$
– tomasz
yesterday




$begingroup$
As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
$endgroup$
– tomasz
yesterday










2 Answers
2






active

oldest

votes


















14












$begingroup$

The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






share|cite|improve this answer











$endgroup$




















    5












    $begingroup$

    You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
    $$
    varnothing, A, mathbbR-A, mathbbR.
    $$

    You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
      $endgroup$
      – Arturo Magidin
      yesterday










    • $begingroup$
      @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
      $endgroup$
      – Thom
      yesterday










    • $begingroup$
      @Thom: Yes. I’ll write it up.
      $endgroup$
      – Arturo Magidin
      yesterday










    • $begingroup$
      @ArturoMagidin Fascinating. Thank you.
      $endgroup$
      – Thom
      yesterday










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151030%2fnon-trivial-topology-where-only-open-sets-are-closed%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    14












    $begingroup$

    The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



    Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



    Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



    Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



    Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



    We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




    Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






    share|cite|improve this answer











    $endgroup$

















      14












      $begingroup$

      The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



      Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



      Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



      Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



      Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



      We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




      Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






      share|cite|improve this answer











      $endgroup$















        14












        14








        14





        $begingroup$

        The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



        Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



        Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



        Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



        Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



        We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




        Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






        share|cite|improve this answer











        $endgroup$



        The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



        Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



        Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



        Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



        Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



        We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




        Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 21 hours ago

























        answered yesterday









        Arturo MagidinArturo Magidin

        265k34590919




        265k34590919





















            5












            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday















            5












            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday













            5












            5








            5





            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$



            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered yesterday









            RandallRandall

            10.6k11431




            10.6k11431











            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday
















            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday















            $begingroup$
            More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
            $endgroup$
            – Arturo Magidin
            yesterday




            $begingroup$
            More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
            $endgroup$
            – Arturo Magidin
            yesterday












            $begingroup$
            @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
            $endgroup$
            – Thom
            yesterday




            $begingroup$
            @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
            $endgroup$
            – Thom
            yesterday












            $begingroup$
            @Thom: Yes. I’ll write it up.
            $endgroup$
            – Arturo Magidin
            yesterday




            $begingroup$
            @Thom: Yes. I’ll write it up.
            $endgroup$
            – Arturo Magidin
            yesterday












            $begingroup$
            @ArturoMagidin Fascinating. Thank you.
            $endgroup$
            – Thom
            yesterday




            $begingroup$
            @ArturoMagidin Fascinating. Thank you.
            $endgroup$
            – Thom
            yesterday

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151030%2fnon-trivial-topology-where-only-open-sets-are-closed%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

            Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

            He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome