Non-trivial topology where only open sets are closedExhaustion of open sets by closed setsNatural non-trivial topology on $mathbb R$ such that there are more than $2^mathbb N$ open setswhy use open interval rather than closed interval as open sets for real line topologyA non-trivial Hausdorff topology on XClosed sets in Noetherian topologyIn the finite complement topology on $mathbbR$, is the subset $ x $ closed?Are closed sets in topology?For which topologies are the concepts of open and closed “interchangeable”?How to determine which sets are open in a topology?Inclusion of open sets in closed sets of Zariski topology

Improve appearance of matrices as arrow labels in tikz-cd

What kind of footwear is suitable for walking in micro gravity environment?

Does convergence of polynomials imply that of its coefficients?

How can an organ that provides biological immortality be unable to regenerate?

Inhabiting Mars versus going straight for a Dyson swarm

Exit shell with shortcut (not typing exit) that closes session properly

Unfrosted light bulb

Why is "la Gestapo" feminine?

Pre-Employment Background Check With Consent For Future Checks

What will the french man say?

PTIJ: Which Dr. Seuss books should one obtain?

Air travel with refrigerated insulin

TDE Master Key Rotation

The English Debate

is this saw blade faulty?

Make the largest box from a cardboard sheet

Mishloach Manot - why the word Mishloach is used specifically

How can I query the supported timezones in Apex?

Does fire aspect on a sword, destroy mob drops?

Why are there no stars visible in cislunar space?

What is the difference between something being completely legal and being completely decriminalized?

CLI: Get information Ubuntu releases

Do I need an EFI partition for each 18.04 ubuntu I have on my HD?

What is the reasoning behind standardization (dividing by standard deviation)?



Non-trivial topology where only open sets are closed


Exhaustion of open sets by closed setsNatural non-trivial topology on $mathbb R$ such that there are more than $2^mathbb N$ open setswhy use open interval rather than closed interval as open sets for real line topologyA non-trivial Hausdorff topology on XClosed sets in Noetherian topologyIn the finite complement topology on $mathbbR$, is the subset $ x $ closed?Are closed sets in topology?For which topologies are the concepts of open and closed “interchangeable”?How to determine which sets are open in a topology?Inclusion of open sets in closed sets of Zariski topology













5












$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday















5












$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday













5












5








5


1



$begingroup$


For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.










share|cite|improve this question











$endgroup$




For example, on $mathbbR$ there exists trivial topology which contains only $mathbbR$ and $emptyset$ and in that topology all open sets are closed and all closed sets are open.



Question. Does there exist non-trivial topology on $mathbbR$ for which all open sets are closed and all closed sets are open? Further, given some general set $X$ whose number of elements is finite, could we always construct non-trivial topology where all open sets are closed and all closed sets are open? What if $X$ has a non-finite number of elements?



I hope my question is not meaningless.



Thank you for any help.







general-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









YuiTo Cheng

2,0592637




2,0592637










asked yesterday









ThomThom

361111




361111







  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday












  • 2




    $begingroup$
    The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
    $endgroup$
    – parsiad
    yesterday






  • 2




    $begingroup$
    (1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Related to your question are door spaces and extremally disconnected spaces.
    $endgroup$
    – William Elliot
    yesterday










  • $begingroup$
    As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
    $endgroup$
    – tomasz
    yesterday







2




2




$begingroup$
The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
$endgroup$
– parsiad
yesterday




$begingroup$
The trivial topology on a set $X$ is $emptyset, X$. The discrete topology on a set $X$ is $2^X$. Both have the property that you are looking for, though I am not sure if you are using the term "trivial" here in reference to the trivial topology or just to mean "simple".
$endgroup$
– parsiad
yesterday




2




2




$begingroup$
(1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
$endgroup$
– Arturo Magidin
yesterday




$begingroup$
(1) The discrete topology, where all subsets are open and closed. (2) Given any partition $X_i_iin Iof $X$, take as a topology the colleciton of all sets that are unions of elements of the partition; the complements are also unions of elements of the partition. This works for any set, regardless of cardinality, and any partition, regarless of size of the partition or of its constituent sets.
$endgroup$
– Arturo Magidin
yesterday




2




2




$begingroup$
Related to your question are door spaces and extremally disconnected spaces.
$endgroup$
– William Elliot
yesterday




$begingroup$
Related to your question are door spaces and extremally disconnected spaces.
$endgroup$
– William Elliot
yesterday












$begingroup$
As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
$endgroup$
– tomasz
yesterday




$begingroup$
As noted in the answers, the spaces you are asking about are effectively discrete. The extremally disconnected spaces (spaces such that the closure of any open set is open) suggested by @WilliamElliot can be much more interesting.
$endgroup$
– tomasz
yesterday










2 Answers
2






active

oldest

votes


















14












$begingroup$

The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






share|cite|improve this answer











$endgroup$




















    5












    $begingroup$

    You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
    $$
    varnothing, A, mathbbR-A, mathbbR.
    $$

    You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
      $endgroup$
      – Arturo Magidin
      yesterday










    • $begingroup$
      @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
      $endgroup$
      – Thom
      yesterday










    • $begingroup$
      @Thom: Yes. I’ll write it up.
      $endgroup$
      – Arturo Magidin
      yesterday










    • $begingroup$
      @ArturoMagidin Fascinating. Thank you.
      $endgroup$
      – Thom
      yesterday










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151030%2fnon-trivial-topology-where-only-open-sets-are-closed%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    14












    $begingroup$

    The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



    Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



    Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



    Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



    Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



    We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




    Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






    share|cite|improve this answer











    $endgroup$

















      14












      $begingroup$

      The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



      Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



      Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



      Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



      Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



      We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




      Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






      share|cite|improve this answer











      $endgroup$















        14












        14








        14





        $begingroup$

        The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



        Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



        Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



        Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



        Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



        We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




        Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.






        share|cite|improve this answer











        $endgroup$



        The topologies with this property are precisely the ones that are derived from partitions of the underlying set $X$.



        Specifically, let $mathcalP=X_i_iin I$ be a partition of $X$, and let $tau$ be the collection of sets of the form $cup_iin I_0X_i$ for $I_0subseteq I$. Then $tau$ is a topology: the empty set corresponds to $I_0=varnothing$, the set $X$ to $I_0=I$; the union of such sets corresponds to the family indexed by the union of indices, and the intersection to the intersection of the indices. Moreover, the complement of the set corresponding to $I_0$ is the set corresponding to $I-I_0$. Thus, $tau$ has the desired property.



        Now let $tau$ be any topology on $X$ with the desired property. Define an equivalence relation on $X$ by letting $xsim y$ if and only if for every $Ain tau$, $xin A$ if and only if $yin A$. Trivially, this is an equivalence relation, and so induces a partition on $X$. I claim that $tau$ is in fact, the topology induced by this partition as above.



        Indeed, if $Ain tau$, then $A=cup_xin A[x]$, where $[x]$ is the equivalence class of $x$. Trivially $A$ is contained in the right hand side, and if $yin[x]$, then since $xin A$ then $yin A$, so we have equality.



        Now, conversely, let $xin X$ and look at $[x]$. I claim that $X-[x]$ lies in $tau$. So see this, let $zin X-[x]$. Then since $znotin [x]$, there exists an open set $A_zin tau$ such that $zin A_z$ but $xnotin A_z$ (and hence, $[x]cap A_z=varnothing$). Now, $cup_znotin[x]A_z$ is an open set, contains every element of $X-[x]$, and intersects $[x]$ trivially because each element in the union does. That is, this open set is $A-[x]$; but since the complement of every open set is open, and $A-[x]$ is open, then $[x]$ is open. Thus, $[x]intau$.



        We have then proven that every element of the partition induced by $sim$ is open, and that every open set is a union of such elements of the partition. That is, the open sets are precisely the unions of elements of the partition $X/sim$.




        Added. The equivalence relation given in the second part can be defined in any topology, of course; and the proof that every open set is a union of equivalence classes and that the complement of an equivalence class is open, always hold. The only place where we used the hypothesis that all open sets are closed was to conclude the equivalence class itself was open. For example, in the standard topology for $mathbbR$, the equivalence relation is the trivial one.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 21 hours ago

























        answered yesterday









        Arturo MagidinArturo Magidin

        265k34590919




        265k34590919





















            5












            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday















            5












            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday













            5












            5








            5





            $begingroup$

            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.






            share|cite|improve this answer









            $endgroup$



            You can manufacture examples like this pretty easily. Let $A$ be any subset of $mathbbR$. Put a topology on $mathbbR$ with the following open sets:
            $$
            varnothing, A, mathbbR-A, mathbbR.
            $$

            You can easily check that this always gives a topology, and a subset of $mathbbR$ is open if and only if it is closed. This construction generalizes to any set $X$: there's nothing special about $mathbbR$ here.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered yesterday









            RandallRandall

            10.6k11431




            10.6k11431











            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday
















            • $begingroup$
              More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
              $endgroup$
              – Thom
              yesterday










            • $begingroup$
              @Thom: Yes. I’ll write it up.
              $endgroup$
              – Arturo Magidin
              yesterday










            • $begingroup$
              @ArturoMagidin Fascinating. Thank you.
              $endgroup$
              – Thom
              yesterday















            $begingroup$
            More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
            $endgroup$
            – Arturo Magidin
            yesterday




            $begingroup$
            More generally, take any partition and take unions of elements of the partition. This example is what you get from the partition $A,mathbbR-A$.
            $endgroup$
            – Arturo Magidin
            yesterday












            $begingroup$
            @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
            $endgroup$
            – Thom
            yesterday




            $begingroup$
            @ArturoMagidin Let us denote with X set of all topologies which satisfy property in the question on $mathbbR$. Can every topology in $X$ be made with some partitions?
            $endgroup$
            – Thom
            yesterday












            $begingroup$
            @Thom: Yes. I’ll write it up.
            $endgroup$
            – Arturo Magidin
            yesterday




            $begingroup$
            @Thom: Yes. I’ll write it up.
            $endgroup$
            – Arturo Magidin
            yesterday












            $begingroup$
            @ArturoMagidin Fascinating. Thank you.
            $endgroup$
            – Thom
            yesterday




            $begingroup$
            @ArturoMagidin Fascinating. Thank you.
            $endgroup$
            – Thom
            yesterday

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151030%2fnon-trivial-topology-where-only-open-sets-are-closed%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

            He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

            Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029