How to plot an unstable attractor?





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{
margin-bottom:0;
}
.everyonelovesstackoverflow{position:absolute;height:1px;width:1px;opacity:0;top:0;left:0;pointer-events:none;}








6












$begingroup$


I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.










share|improve this question











$endgroup$










  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55


















6












$begingroup$


I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.










share|improve this question











$endgroup$










  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55














6












6








6


1



$begingroup$


I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.










share|improve this question











$endgroup$




I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.







plotting differential-equations






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 27 at 3:56









user64494

4,2162 gold badges14 silver badges23 bronze badges




4,2162 gold badges14 silver badges23 bronze badges










asked May 26 at 20:48









JavierJavier

1506 bronze badges




1506 bronze badges











  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55














  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55








1




1




$begingroup$
Try using NDSolve instead
$endgroup$
– b3m2a1
May 26 at 20:55




$begingroup$
Try using NDSolve instead
$endgroup$
– b3m2a1
May 26 at 20:55










2 Answers
2






active

oldest

votes


















15














$begingroup$

To visualize a 2D system, I would start with StreamPlot:



vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


Mathematica graphics



You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



ics = {{{Cos[1/5], Sin[1/5]}, Red},
{{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
StreamPoints -> {Append[ics, Automatic]},
Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


Mathematica graphics






share|improve this answer









$endgroup$























    5














    $begingroup$

    eqns = {x'[t] == 
    x[t] - y[t] -
    x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
    y'[t] ==
    x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
    x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
    sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
    ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


    enter image description here






    share|improve this answer









    $endgroup$

















      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });















      draft saved

      draft discarded
















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199145%2fhow-to-plot-an-unstable-attractor%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      15














      $begingroup$

      To visualize a 2D system, I would start with StreamPlot:



      vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
      StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


      Mathematica graphics



      You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



      ics = {{{Cos[1/5], Sin[1/5]}, Red},
      {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
      StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
      StreamPoints -> {Append[ics, Automatic]},
      Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


      Mathematica graphics






      share|improve this answer









      $endgroup$




















        15














        $begingroup$

        To visualize a 2D system, I would start with StreamPlot:



        vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
        StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


        Mathematica graphics



        You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



        ics = {{{Cos[1/5], Sin[1/5]}, Red},
        {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
        StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
        StreamPoints -> {Append[ics, Automatic]},
        Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


        Mathematica graphics






        share|improve this answer









        $endgroup$


















          15














          15










          15







          $begingroup$

          To visualize a 2D system, I would start with StreamPlot:



          vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


          Mathematica graphics



          You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



          ics = {{{Cos[1/5], Sin[1/5]}, Red},
          {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
          StreamPoints -> {Append[ics, Automatic]},
          Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


          Mathematica graphics






          share|improve this answer









          $endgroup$



          To visualize a 2D system, I would start with StreamPlot:



          vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


          Mathematica graphics



          You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



          ics = {{{Cos[1/5], Sin[1/5]}, Red},
          {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
          StreamPoints -> {Append[ics, Automatic]},
          Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


          Mathematica graphics







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered May 26 at 22:01









          Michael E2Michael E2

          159k13 gold badges219 silver badges518 bronze badges




          159k13 gold badges219 silver badges518 bronze badges




























              5














              $begingroup$

              eqns = {x'[t] == 
              x[t] - y[t] -
              x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
              y'[t] ==
              x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
              x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
              sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
              ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


              enter image description here






              share|improve this answer









              $endgroup$




















                5














                $begingroup$

                eqns = {x'[t] == 
                x[t] - y[t] -
                x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
                y'[t] ==
                x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
                x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
                sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
                ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


                enter image description here






                share|improve this answer









                $endgroup$


















                  5














                  5










                  5







                  $begingroup$

                  eqns = {x'[t] == 
                  x[t] - y[t] -
                  x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
                  y'[t] ==
                  x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
                  x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
                  sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
                  ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


                  enter image description here






                  share|improve this answer









                  $endgroup$



                  eqns = {x'[t] == 
                  x[t] - y[t] -
                  x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
                  y'[t] ==
                  x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
                  x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
                  sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
                  ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered May 26 at 21:16









                  b3m2a1b3m2a1

                  31.7k3 gold badges64 silver badges184 bronze badges




                  31.7k3 gold badges64 silver badges184 bronze badges


































                      draft saved

                      draft discarded



















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199145%2fhow-to-plot-an-unstable-attractor%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                      He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                      Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029