How to plot an unstable attractor?





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{
margin-bottom:0;
}
.everyonelovesstackoverflow{position:absolute;height:1px;width:1px;opacity:0;top:0;left:0;pointer-events:none;}








6












$begingroup$


I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.










share|improve this question











$endgroup$










  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55


















6












$begingroup$


I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.










share|improve this question











$endgroup$










  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55














6












6








6


1



$begingroup$


I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.










share|improve this question











$endgroup$




I'm trying to solve and plot the following in Mathematica:



eqns = {x'[t] == 
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]


This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.







plotting differential-equations






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 27 at 3:56









user64494

4,2162 gold badges14 silver badges23 bronze badges




4,2162 gold badges14 silver badges23 bronze badges










asked May 26 at 20:48









JavierJavier

1506 bronze badges




1506 bronze badges











  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55














  • 1




    $begingroup$
    Try using NDSolve instead
    $endgroup$
    – b3m2a1
    May 26 at 20:55








1




1




$begingroup$
Try using NDSolve instead
$endgroup$
– b3m2a1
May 26 at 20:55




$begingroup$
Try using NDSolve instead
$endgroup$
– b3m2a1
May 26 at 20:55










2 Answers
2






active

oldest

votes


















15














$begingroup$

To visualize a 2D system, I would start with StreamPlot:



vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


Mathematica graphics



You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



ics = {{{Cos[1/5], Sin[1/5]}, Red},
{{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
StreamPoints -> {Append[ics, Automatic]},
Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


Mathematica graphics






share|improve this answer









$endgroup$























    5














    $begingroup$

    eqns = {x'[t] == 
    x[t] - y[t] -
    x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
    y'[t] ==
    x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
    x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
    sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
    ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


    enter image description here






    share|improve this answer









    $endgroup$

















      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });















      draft saved

      draft discarded
















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199145%2fhow-to-plot-an-unstable-attractor%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      15














      $begingroup$

      To visualize a 2D system, I would start with StreamPlot:



      vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
      StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


      Mathematica graphics



      You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



      ics = {{{Cos[1/5], Sin[1/5]}, Red},
      {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
      StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
      StreamPoints -> {Append[ics, Automatic]},
      Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


      Mathematica graphics






      share|improve this answer









      $endgroup$




















        15














        $begingroup$

        To visualize a 2D system, I would start with StreamPlot:



        vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
        StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


        Mathematica graphics



        You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



        ics = {{{Cos[1/5], Sin[1/5]}, Red},
        {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
        StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
        StreamPoints -> {Append[ics, Automatic]},
        Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


        Mathematica graphics






        share|improve this answer









        $endgroup$


















          15














          15










          15







          $begingroup$

          To visualize a 2D system, I would start with StreamPlot:



          vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


          Mathematica graphics



          You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



          ics = {{{Cos[1/5], Sin[1/5]}, Red},
          {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
          StreamPoints -> {Append[ics, Automatic]},
          Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


          Mathematica graphics






          share|improve this answer









          $endgroup$



          To visualize a 2D system, I would start with StreamPlot:



          vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]


          Mathematica graphics



          You can use StreamPoints to highlight the structure and Epilog to mark the attractor at $(1,0)$:



          ics = {{{Cos[1/5], Sin[1/5]}, Red},
          {{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
          StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
          StreamPoints -> {Append[ics, Automatic]},
          Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]


          Mathematica graphics







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered May 26 at 22:01









          Michael E2Michael E2

          159k13 gold badges219 silver badges518 bronze badges




          159k13 gold badges219 silver badges518 bronze badges




























              5














              $begingroup$

              eqns = {x'[t] == 
              x[t] - y[t] -
              x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
              y'[t] ==
              x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
              x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
              sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
              ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


              enter image description here






              share|improve this answer









              $endgroup$




















                5














                $begingroup$

                eqns = {x'[t] == 
                x[t] - y[t] -
                x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
                y'[t] ==
                x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
                x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
                sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
                ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


                enter image description here






                share|improve this answer









                $endgroup$


















                  5














                  5










                  5







                  $begingroup$

                  eqns = {x'[t] == 
                  x[t] - y[t] -
                  x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
                  y'[t] ==
                  x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
                  x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
                  sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
                  ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


                  enter image description here






                  share|improve this answer









                  $endgroup$



                  eqns = {x'[t] == 
                  x[t] - y[t] -
                  x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
                  y'[t] ==
                  x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
                  x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
                  sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
                  ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered May 26 at 21:16









                  b3m2a1b3m2a1

                  31.7k3 gold badges64 silver badges184 bronze badges




                  31.7k3 gold badges64 silver badges184 bronze badges


































                      draft saved

                      draft discarded



















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199145%2fhow-to-plot-an-unstable-attractor%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

                      Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                      He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome