How to plot an unstable attractor?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{
margin-bottom:0;
}
.everyonelovesstackoverflow{position:absolute;height:1px;width:1px;opacity:0;top:0;left:0;pointer-events:none;}
$begingroup$
I'm trying to solve and plot the following in Mathematica:
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]
This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.
plotting differential-equations
$endgroup$
add a comment
|
$begingroup$
I'm trying to solve and plot the following in Mathematica:
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]
This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.
plotting differential-equations
$endgroup$
1
$begingroup$
Try usingNDSolve
instead
$endgroup$
– b3m2a1
May 26 at 20:55
add a comment
|
$begingroup$
I'm trying to solve and plot the following in Mathematica:
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]
This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.
plotting differential-equations
$endgroup$
I'm trying to solve and plot the following in Mathematica:
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
DSolve[eqns, {x, y}, t]
This is supposed to be an example of unstable attractor ODE. However, execution never ends and I don't manage to see the solution of the equation.
plotting differential-equations
plotting differential-equations
edited May 27 at 3:56
user64494
4,2162 gold badges14 silver badges23 bronze badges
4,2162 gold badges14 silver badges23 bronze badges
asked May 26 at 20:48
JavierJavier
1506 bronze badges
1506 bronze badges
1
$begingroup$
Try usingNDSolve
instead
$endgroup$
– b3m2a1
May 26 at 20:55
add a comment
|
1
$begingroup$
Try usingNDSolve
instead
$endgroup$
– b3m2a1
May 26 at 20:55
1
1
$begingroup$
Try using
NDSolve
instead$endgroup$
– b3m2a1
May 26 at 20:55
$begingroup$
Try using
NDSolve
instead$endgroup$
– b3m2a1
May 26 at 20:55
add a comment
|
2 Answers
2
active
oldest
votes
$begingroup$
To visualize a 2D system, I would start with StreamPlot
:
vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]
You can use StreamPoints
to highlight the structure and Epilog
to mark the attractor at $(1,0)$:
ics = {{{Cos[1/5], Sin[1/5]}, Red},
{{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
StreamPoints -> {Append[ics, Automatic]},
Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]
$endgroup$
add a comment
|
$begingroup$
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]
$endgroup$
add a comment
|
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199145%2fhow-to-plot-an-unstable-attractor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To visualize a 2D system, I would start with StreamPlot
:
vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]
You can use StreamPoints
to highlight the structure and Epilog
to mark the attractor at $(1,0)$:
ics = {{{Cos[1/5], Sin[1/5]}, Red},
{{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
StreamPoints -> {Append[ics, Automatic]},
Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]
$endgroup$
add a comment
|
$begingroup$
To visualize a 2D system, I would start with StreamPlot
:
vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]
You can use StreamPoints
to highlight the structure and Epilog
to mark the attractor at $(1,0)$:
ics = {{{Cos[1/5], Sin[1/5]}, Red},
{{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
StreamPoints -> {Append[ics, Automatic]},
Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]
$endgroup$
add a comment
|
$begingroup$
To visualize a 2D system, I would start with StreamPlot
:
vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]
You can use StreamPoints
to highlight the structure and Epilog
to mark the attractor at $(1,0)$:
ics = {{{Cos[1/5], Sin[1/5]}, Red},
{{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
StreamPoints -> {Append[ics, Automatic]},
Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]
$endgroup$
To visualize a 2D system, I would start with StreamPlot
:
vf = {x', y'} /. First@Solve[eqns /. f_[t] :> f, {x', y'}]; (* strip the args *)
StreamPlot[vf, {x, -2, 2}, {y, -2, 2}]
You can use StreamPoints
to highlight the structure and Epilog
to mark the attractor at $(1,0)$:
ics = {{{Cos[1/5], Sin[1/5]}, Red},
{{0.5, 0}, Magenta}, {{1.5, 0.}, Magenta}};
StreamPlot[vf, {x, -2, 2}, {y, -2, 2},
StreamPoints -> {Append[ics, Automatic]},
Epilog -> {White, EdgeForm[Black], Disk[{1, 0}, 0.03]}]
answered May 26 at 22:01
Michael E2Michael E2
159k13 gold badges219 silver badges518 bronze badges
159k13 gold badges219 silver badges518 bronze badges
add a comment
|
add a comment
|
$begingroup$
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]
$endgroup$
add a comment
|
$begingroup$
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]
$endgroup$
add a comment
|
$begingroup$
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]
$endgroup$
eqns = {x'[t] ==
x[t] - y[t] -
x[t] (x[t]^2 + y[t]^2) + (x[t] y[t])/Sqrt[x[t]^2 + y[t]^2],
y'[t] ==
x[t] + y[t] - y[t] (x[t]^2 + y[t]^2) -
x[t]^2/Sqrt[x[t]^2 + y[t]^2]};
sol = NDSolve[Join[{x[0]==1.5, y[0]==1.5}, eqns], {x, y}, {t, 0, 50}];
ParametricPlot[{x[t], y[t]}/.sol//Evaluate, {t, 0, 50}, PlotRange->All]
answered May 26 at 21:16
b3m2a1b3m2a1
31.7k3 gold badges64 silver badges184 bronze badges
31.7k3 gold badges64 silver badges184 bronze badges
add a comment
|
add a comment
|
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199145%2fhow-to-plot-an-unstable-attractor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Try using
NDSolve
instead$endgroup$
– b3m2a1
May 26 at 20:55