Open problems concerning all the finite groups












6












$begingroup$


What are the open problems concerning all the finite groups?



The references will be appreciated. Here are two examples:




  • Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).


  • K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.



There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
    $endgroup$
    – YCor
    yesterday










  • $begingroup$
    I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
    $endgroup$
    – Alexander Chervov
    yesterday






  • 1




    $begingroup$
    I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
    $endgroup$
    – Taras Banakh
    yesterday


















6












$begingroup$


What are the open problems concerning all the finite groups?



The references will be appreciated. Here are two examples:




  • Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).


  • K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.



There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
    $endgroup$
    – YCor
    yesterday










  • $begingroup$
    I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
    $endgroup$
    – Alexander Chervov
    yesterday






  • 1




    $begingroup$
    I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
    $endgroup$
    – Taras Banakh
    yesterday
















6












6








6


3



$begingroup$


What are the open problems concerning all the finite groups?



The references will be appreciated. Here are two examples:




  • Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).


  • K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.



There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.










share|cite|improve this question









$endgroup$




What are the open problems concerning all the finite groups?



The references will be appreciated. Here are two examples:




  • Aschbacher-Guralnick conjecture (AG1984 p.447): the number of conjugacy classes of maximal subgroups of a finite group is at most its class number (i.e. the number of conjugacy classes of elements, or the number of irreducible complex representations up to equiv.).


  • K.S. Brown's problem (B2000 Q.4; SW2016 p.760): Let $G$ be a finite group, $mu$ be the Möbius function of its subgroup lattice $L(G)$. Then the sum $sum_{H in L(G)}mu(H,G)|G:H|$ is nonzero.



There are two types of problems, those involving an upper/lower bound (like Aschbacher-Guralnick conjecture) and those "exact", involving no bound (like K.S. Brown's problem). I guess the first type is much more abundant than the second, so for the first type, please restrict to the main problems.







gr.group-theory finite-groups big-list open-problems algebraic-combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Sebastien PalcouxSebastien Palcoux

8,173338107




8,173338107












  • $begingroup$
    It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
    $endgroup$
    – YCor
    yesterday










  • $begingroup$
    I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
    $endgroup$
    – Alexander Chervov
    yesterday






  • 1




    $begingroup$
    I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
    $endgroup$
    – Taras Banakh
    yesterday




















  • $begingroup$
    It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
    $endgroup$
    – YCor
    yesterday










  • $begingroup$
    I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
    $endgroup$
    – Alexander Chervov
    yesterday






  • 1




    $begingroup$
    I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
    $endgroup$
    – Taras Banakh
    yesterday


















$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday




$begingroup$
It's not clear what's a theorem/problem about "all" finite groups. A theorem about nilpotent finite groups, for instance, can provide information to Sylow subgroups of all finite groups, etc. Many problems about "all" finite groups are treated by reduction to special subcases (e.g., simple groups).
$endgroup$
– YCor
yesterday












$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday




$begingroup$
I would suggest not to restrict to "all" finite group - just finite groups would be ok, imho. It does not seems to me that we get so many answers that it would be difficult to navigate, and subdivision to "all" - "not all" would be justified
$endgroup$
– Alexander Chervov
yesterday




1




1




$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday






$begingroup$
I like this open problem (mathoverflow.net/q/316434/61536) on prime factrization of finite groups: Can each finite group $G$ be written as the product $G=A_1cdots A_n$ of subsets of prime cardinality such that $|G|=|A_1|cdots|A_n|$?
$endgroup$
– Taras Banakh
yesterday












1 Answer
1






active

oldest

votes


















5












$begingroup$

There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.




  • (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?

  • (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?

  • (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?


A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).



The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.



Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "504"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326199%2fopen-problems-concerning-all-the-finite-groups%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.




    • (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?

    • (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?

    • (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?


    A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).



    The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.



    Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.






    share|cite|improve this answer









    $endgroup$


















      5












      $begingroup$

      There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.




      • (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?

      • (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?

      • (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?


      A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).



      The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.



      Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.






      share|cite|improve this answer









      $endgroup$
















        5












        5








        5





        $begingroup$

        There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.




        • (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?

        • (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?

        • (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?


        A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).



        The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.



        Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.






        share|cite|improve this answer









        $endgroup$



        There are plenty of examples; the below are taken from the Kourovka Notebook, and include a fairly broad range of topics.




        • (4.55) Let $G$ be a finite group and $mathbb{Z}_p$ the localization at $p$. Does the Krull-Schmidt theorem hold for projective $mathbb{Z}_pG$-modules?

        • (8.51) If $G$ is a finite group and $p$ a prime, let $m_p(G)$ denote the number of ordinary irreducible characters of $G$ whose degree is not divisible by $p$. Let $P$ be a Sylow $p$-subgroup of $G$. Is it true that $m_p(G) = m_p(N_G(P))$?

        • (9.6) Is it true that an independent basis of quasiidentities of any finite group is finite?


        A few other questions of a similar format to the questions you provided include (9.23), (11.17), (13.31), and (16.45).



        The questions I picked are all of the form "Is $P$ true for all finite groups $G$?". There are many questions of the form "Characterize the finite groups $G$ for which $P$ holds", which to my ears has a slightly different ring to it than what you were asking for. There are also some questions regarding the class of finite groups, which again is a different interpretation.



        Indeed, completely in line with Yves' comment, there is some ambiguity in what a problem for "all" finite groups should look like. Fortunately, there are enough problems in the Notebook to satisfy any interpretation, I should think.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        Carl-Fredrik Nyberg BroddaCarl-Fredrik Nyberg Brodda

        396210




        396210






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326199%2fopen-problems-concerning-all-the-finite-groups%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

            What is the offset in a seaplane's hull?

            Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029