If I can solve Sudoku, can I solve the Travelling Salesman Problem (TSP)? If so, how?












21












$begingroup$


Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    Mar 15 at 20:24










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    Mar 15 at 20:25
















21












$begingroup$


Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    Mar 15 at 20:24










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    Mar 15 at 20:25














21












21








21


5



$begingroup$


Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.










share|cite|improve this question











$endgroup$




Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.







algorithms np-complete reductions traveling-salesman sudoku






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 16 at 15:45









Rodrigo de Azevedo

704615




704615










asked Mar 15 at 7:53









Chakrapani N RaoChakrapani N Rao

11418




11418








  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    Mar 15 at 20:24










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    Mar 15 at 20:25














  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    Mar 15 at 20:24










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    Mar 15 at 20:25








1




1




$begingroup$
This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
$endgroup$
– C. Windolf
Mar 15 at 20:24




$begingroup$
This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
$endgroup$
– C. Windolf
Mar 15 at 20:24












$begingroup$
@C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
$endgroup$
– David Richerby
Mar 15 at 20:25




$begingroup$
@C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
$endgroup$
– David Richerby
Mar 15 at 20:25










2 Answers
2






active

oldest

votes


















31












$begingroup$

For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
    $endgroup$
    – Chakrapani N Rao
    Mar 15 at 8:22






  • 2




    $begingroup$
    @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
    $endgroup$
    – D.W.
    Mar 15 at 8:25






  • 8




    $begingroup$
    @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
    $endgroup$
    – David Richerby
    Mar 15 at 17:43






  • 8




    $begingroup$
    @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
    $endgroup$
    – David Richerby
    Mar 15 at 18:32






  • 2




    $begingroup$
    @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
    $endgroup$
    – D.W.
    Mar 17 at 5:11





















24












$begingroup$

It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "419"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105618%2fif-i-can-solve-sudoku-can-i-solve-the-travelling-salesman-problem-tsp-if-so%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    31












    $begingroup$

    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      Mar 15 at 8:22






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      Mar 15 at 8:25






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      Mar 15 at 17:43






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      Mar 15 at 18:32






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      Mar 17 at 5:11


















    31












    $begingroup$

    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      Mar 15 at 8:22






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      Mar 15 at 8:25






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      Mar 15 at 17:43






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      Mar 15 at 18:32






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      Mar 17 at 5:11
















    31












    31








    31





    $begingroup$

    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






    share|cite|improve this answer











    $endgroup$



    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Mar 17 at 15:53

























    answered Mar 15 at 8:19









    D.W.D.W.

    102k12127291




    102k12127291








    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      Mar 15 at 8:22






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      Mar 15 at 8:25






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      Mar 15 at 17:43






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      Mar 15 at 18:32






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      Mar 17 at 5:11
















    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      Mar 15 at 8:22






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      Mar 15 at 8:25






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      Mar 15 at 17:43






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      Mar 15 at 18:32






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      Mar 17 at 5:11










    1




    1




    $begingroup$
    Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
    $endgroup$
    – Chakrapani N Rao
    Mar 15 at 8:22




    $begingroup$
    Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
    $endgroup$
    – Chakrapani N Rao
    Mar 15 at 8:22




    2




    2




    $begingroup$
    @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
    $endgroup$
    – D.W.
    Mar 15 at 8:25




    $begingroup$
    @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
    $endgroup$
    – D.W.
    Mar 15 at 8:25




    8




    8




    $begingroup$
    @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
    $endgroup$
    – David Richerby
    Mar 15 at 17:43




    $begingroup$
    @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
    $endgroup$
    – David Richerby
    Mar 15 at 17:43




    8




    8




    $begingroup$
    @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
    $endgroup$
    – David Richerby
    Mar 15 at 18:32




    $begingroup$
    @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
    $endgroup$
    – David Richerby
    Mar 15 at 18:32




    2




    2




    $begingroup$
    @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
    $endgroup$
    – D.W.
    Mar 17 at 5:11






    $begingroup$
    @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
    $endgroup$
    – D.W.
    Mar 17 at 5:11













    24












    $begingroup$

    It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






    share|cite|improve this answer









    $endgroup$


















      24












      $begingroup$

      It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






      share|cite|improve this answer









      $endgroup$
















        24












        24








        24





        $begingroup$

        It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






        share|cite|improve this answer









        $endgroup$



        It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 15 at 20:22









        rlmsrlms

        34114




        34114






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Computer Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105618%2fif-i-can-solve-sudoku-can-i-solve-the-travelling-salesman-problem-tsp-if-so%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

            He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

            Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029