Resetting two CD4017 counters simultaneously, only one resets












5












$begingroup$


I am working on a simple 24-hour clock based on the CD4017. To reset when the clock reaches the 24th hour, two diodes are used to produce an "and" logic when the 2 digit and 4 digit LEDs receive a high output from the CD4017. The output from these diodes are connected to the reset pins of both CD4017 chips.



What I have found happens in practice is that the U-H10 chip resets as expected, but the U-H01 chip does not. I imagine this could be due to a delay in the signal due to differences in trace lengths (maybe 10-20mm) and or placements somehow creating a tiny RC effect. (One has more vias than the other.) I tried adding a small cap, shorting resistors R138 and R6, as well as removing R18 (on an etched PCB, not a breadboard.) I also checked the reset (pin 15) of U-H01 and it does not APPEAR to be shorted to ground.



Has anyone else faced a similar problem? Ideas?



NOTE For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." Therefore a monostable circuit that is waiting for a falling edge voltage to trigger will not work in this application without using an inverter.



24-hour LEDs controlled by two CD4017 chips



traces in PCB design



CD4017 chips real PCB










share|improve this question









New contributor




Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    5












    $begingroup$


    I am working on a simple 24-hour clock based on the CD4017. To reset when the clock reaches the 24th hour, two diodes are used to produce an "and" logic when the 2 digit and 4 digit LEDs receive a high output from the CD4017. The output from these diodes are connected to the reset pins of both CD4017 chips.



    What I have found happens in practice is that the U-H10 chip resets as expected, but the U-H01 chip does not. I imagine this could be due to a delay in the signal due to differences in trace lengths (maybe 10-20mm) and or placements somehow creating a tiny RC effect. (One has more vias than the other.) I tried adding a small cap, shorting resistors R138 and R6, as well as removing R18 (on an etched PCB, not a breadboard.) I also checked the reset (pin 15) of U-H01 and it does not APPEAR to be shorted to ground.



    Has anyone else faced a similar problem? Ideas?



    NOTE For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." Therefore a monostable circuit that is waiting for a falling edge voltage to trigger will not work in this application without using an inverter.



    24-hour LEDs controlled by two CD4017 chips



    traces in PCB design



    CD4017 chips real PCB










    share|improve this question









    New contributor




    Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      5












      5








      5





      $begingroup$


      I am working on a simple 24-hour clock based on the CD4017. To reset when the clock reaches the 24th hour, two diodes are used to produce an "and" logic when the 2 digit and 4 digit LEDs receive a high output from the CD4017. The output from these diodes are connected to the reset pins of both CD4017 chips.



      What I have found happens in practice is that the U-H10 chip resets as expected, but the U-H01 chip does not. I imagine this could be due to a delay in the signal due to differences in trace lengths (maybe 10-20mm) and or placements somehow creating a tiny RC effect. (One has more vias than the other.) I tried adding a small cap, shorting resistors R138 and R6, as well as removing R18 (on an etched PCB, not a breadboard.) I also checked the reset (pin 15) of U-H01 and it does not APPEAR to be shorted to ground.



      Has anyone else faced a similar problem? Ideas?



      NOTE For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." Therefore a monostable circuit that is waiting for a falling edge voltage to trigger will not work in this application without using an inverter.



      24-hour LEDs controlled by two CD4017 chips



      traces in PCB design



      CD4017 chips real PCB










      share|improve this question









      New contributor




      Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I am working on a simple 24-hour clock based on the CD4017. To reset when the clock reaches the 24th hour, two diodes are used to produce an "and" logic when the 2 digit and 4 digit LEDs receive a high output from the CD4017. The output from these diodes are connected to the reset pins of both CD4017 chips.



      What I have found happens in practice is that the U-H10 chip resets as expected, but the U-H01 chip does not. I imagine this could be due to a delay in the signal due to differences in trace lengths (maybe 10-20mm) and or placements somehow creating a tiny RC effect. (One has more vias than the other.) I tried adding a small cap, shorting resistors R138 and R6, as well as removing R18 (on an etched PCB, not a breadboard.) I also checked the reset (pin 15) of U-H01 and it does not APPEAR to be shorted to ground.



      Has anyone else faced a similar problem? Ideas?



      NOTE For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." Therefore a monostable circuit that is waiting for a falling edge voltage to trigger will not work in this application without using an inverter.



      24-hour LEDs controlled by two CD4017 chips



      traces in PCB design



      CD4017 chips real PCB







      diodes clock counter reset cd4017






      share|improve this question









      New contributor




      Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 2 hours ago







      Harrito













      New contributor




      Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked yesterday









      HarritoHarrito

      293




      293




      New contributor




      Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Harrito is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          3 Answers
          3






          active

          oldest

          votes


















          9












          $begingroup$

          You're using a "glitch" to reset your counters. In other words, when the reset pulse starts, it immediately removes the conditions for its own creation, so it's only as wide as the propagation delay through one of the counters.



          Clearly, one of those counters is faster than the other, so it resets successfully, while the other does not. This is why this is considered poor design practice, and why synchronous counting was invented — it only works under certain conditions.



          The fix is to use the glitch to trigger a monostable timer (e.g., half of a 4098) that will guarantee the minimum reset pulse width for both counters. The reset won't occur until the timer is successfully triggered, by which time, it doesn't matter if the glitch goes away.





          I see that you have removed R18's connection to ground, but I don't see any other provision to pull that node high. If that node is just floating, then you're just getting capacitive coupling and/or leakage current through the diodes for your reset pulse, compounding the problem.






          share|improve this answer











          $endgroup$













          • $begingroup$
            thank you. You are right on many counts. For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." As you can imagine, R18 was removed for trouble shooting to ensure that traces were as designed and the circuit had been implemented as drawn (even if incorrect.) Due to my limited access to parts, I'll likely try using a 555 timer or a couple of 2N2222 transistors. I image this case is where a reset supervisor chip (ADM803) would come in handy.
            $endgroup$
            – Harrito
            yesterday





















          0












          $begingroup$

          R18 should go to Vdd, not ground. Otherwise the RESET line will never go high (the diodes can only pull it low).



          Edit: Depending on the logic family you are using, there may be enough diode and stray capacitance in the diodes to cause false resets. Assume HC logic you can shunt R18 with about 20pF. And make sure R18 connects to Vdd (+5V).






          share|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Obviously, if ONE of the counters is resetting, then something is working. We have to assume that the schematic is wrong in that detail. Note the rework on R18 (lower left corner) in the PCB photo.
            $endgroup$
            – Dave Tweed
            yesterday








          • 1




            $begingroup$
            Capacitive kick through the diodes?
            $endgroup$
            – Transistor
            yesterday










          • $begingroup$
            @Transistor Could be. Shunt R18 with ~20pF and make sure it's connected to Vdd. Don't add too much capacitance or other problems may crop up.
            $endgroup$
            – Spehro Pefhany
            yesterday










          • $begingroup$
            Even with the suggested capacitance, this is still not a reliable solution. Now you're counting on the fact that the two counters have exactly the same logic threshold on their reset inputs.
            $endgroup$
            – Dave Tweed
            yesterday










          • $begingroup$
            @DaveTweed Yes, it's probably not a great solution. Your suggestion of a one-shot is much better. If OP does try the above, they should also reduce the resistance of R18 to 2K or so (HC logic) to give the propogation delay a chance to make up for the any difference in logic thresholds (which would tend to reset the slower one only, and the problem is magnified by the slow rise time vs. fast fall time of the diode AND). We used to do ugly things with diodes and capacitors but a one-shot or at least a Schmitt trigger + RC is much more elegant.
            $endgroup$
            – Spehro Pefhany
            yesterday





















          0












          $begingroup$

          For a one-time design you can fix this by increasing the resistor in series with the reset pin of the faster IC , R138 in this case. I would use 10K, leave R6 unchanged. (And use the pull-up resistor others have mentioned.) For a production run you probably have to use a one-shot.






          share|improve this answer








          New contributor




          EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("schematics", function () {
            StackExchange.schematics.init();
            });
            }, "cicuitlab");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "135"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            Harrito is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429021%2fresetting-two-cd4017-counters-simultaneously-only-one-resets%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            9












            $begingroup$

            You're using a "glitch" to reset your counters. In other words, when the reset pulse starts, it immediately removes the conditions for its own creation, so it's only as wide as the propagation delay through one of the counters.



            Clearly, one of those counters is faster than the other, so it resets successfully, while the other does not. This is why this is considered poor design practice, and why synchronous counting was invented — it only works under certain conditions.



            The fix is to use the glitch to trigger a monostable timer (e.g., half of a 4098) that will guarantee the minimum reset pulse width for both counters. The reset won't occur until the timer is successfully triggered, by which time, it doesn't matter if the glitch goes away.





            I see that you have removed R18's connection to ground, but I don't see any other provision to pull that node high. If that node is just floating, then you're just getting capacitive coupling and/or leakage current through the diodes for your reset pulse, compounding the problem.






            share|improve this answer











            $endgroup$













            • $begingroup$
              thank you. You are right on many counts. For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." As you can imagine, R18 was removed for trouble shooting to ensure that traces were as designed and the circuit had been implemented as drawn (even if incorrect.) Due to my limited access to parts, I'll likely try using a 555 timer or a couple of 2N2222 transistors. I image this case is where a reset supervisor chip (ADM803) would come in handy.
              $endgroup$
              – Harrito
              yesterday


















            9












            $begingroup$

            You're using a "glitch" to reset your counters. In other words, when the reset pulse starts, it immediately removes the conditions for its own creation, so it's only as wide as the propagation delay through one of the counters.



            Clearly, one of those counters is faster than the other, so it resets successfully, while the other does not. This is why this is considered poor design practice, and why synchronous counting was invented — it only works under certain conditions.



            The fix is to use the glitch to trigger a monostable timer (e.g., half of a 4098) that will guarantee the minimum reset pulse width for both counters. The reset won't occur until the timer is successfully triggered, by which time, it doesn't matter if the glitch goes away.





            I see that you have removed R18's connection to ground, but I don't see any other provision to pull that node high. If that node is just floating, then you're just getting capacitive coupling and/or leakage current through the diodes for your reset pulse, compounding the problem.






            share|improve this answer











            $endgroup$













            • $begingroup$
              thank you. You are right on many counts. For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." As you can imagine, R18 was removed for trouble shooting to ensure that traces were as designed and the circuit had been implemented as drawn (even if incorrect.) Due to my limited access to parts, I'll likely try using a 555 timer or a couple of 2N2222 transistors. I image this case is where a reset supervisor chip (ADM803) would come in handy.
              $endgroup$
              – Harrito
              yesterday
















            9












            9








            9





            $begingroup$

            You're using a "glitch" to reset your counters. In other words, when the reset pulse starts, it immediately removes the conditions for its own creation, so it's only as wide as the propagation delay through one of the counters.



            Clearly, one of those counters is faster than the other, so it resets successfully, while the other does not. This is why this is considered poor design practice, and why synchronous counting was invented — it only works under certain conditions.



            The fix is to use the glitch to trigger a monostable timer (e.g., half of a 4098) that will guarantee the minimum reset pulse width for both counters. The reset won't occur until the timer is successfully triggered, by which time, it doesn't matter if the glitch goes away.





            I see that you have removed R18's connection to ground, but I don't see any other provision to pull that node high. If that node is just floating, then you're just getting capacitive coupling and/or leakage current through the diodes for your reset pulse, compounding the problem.






            share|improve this answer











            $endgroup$



            You're using a "glitch" to reset your counters. In other words, when the reset pulse starts, it immediately removes the conditions for its own creation, so it's only as wide as the propagation delay through one of the counters.



            Clearly, one of those counters is faster than the other, so it resets successfully, while the other does not. This is why this is considered poor design practice, and why synchronous counting was invented — it only works under certain conditions.



            The fix is to use the glitch to trigger a monostable timer (e.g., half of a 4098) that will guarantee the minimum reset pulse width for both counters. The reset won't occur until the timer is successfully triggered, by which time, it doesn't matter if the glitch goes away.





            I see that you have removed R18's connection to ground, but I don't see any other provision to pull that node high. If that node is just floating, then you're just getting capacitive coupling and/or leakage current through the diodes for your reset pulse, compounding the problem.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited yesterday

























            answered yesterday









            Dave TweedDave Tweed

            122k9152264




            122k9152264












            • $begingroup$
              thank you. You are right on many counts. For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." As you can imagine, R18 was removed for trouble shooting to ensure that traces were as designed and the circuit had been implemented as drawn (even if incorrect.) Due to my limited access to parts, I'll likely try using a 555 timer or a couple of 2N2222 transistors. I image this case is where a reset supervisor chip (ADM803) would come in handy.
              $endgroup$
              – Harrito
              yesterday




















            • $begingroup$
              thank you. You are right on many counts. For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." As you can imagine, R18 was removed for trouble shooting to ensure that traces were as designed and the circuit had been implemented as drawn (even if incorrect.) Due to my limited access to parts, I'll likely try using a 555 timer or a couple of 2N2222 transistors. I image this case is where a reset supervisor chip (ADM803) would come in handy.
              $endgroup$
              – Harrito
              yesterday


















            $begingroup$
            thank you. You are right on many counts. For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." As you can imagine, R18 was removed for trouble shooting to ensure that traces were as designed and the circuit had been implemented as drawn (even if incorrect.) Due to my limited access to parts, I'll likely try using a 555 timer or a couple of 2N2222 transistors. I image this case is where a reset supervisor chip (ADM803) would come in handy.
            $endgroup$
            – Harrito
            yesterday






            $begingroup$
            thank you. You are right on many counts. For those unfamiliar with the CD4017, the reset is high, not low. From the TI datasheet "A high RESET signal clears the counter to its zero count." As you can imagine, R18 was removed for trouble shooting to ensure that traces were as designed and the circuit had been implemented as drawn (even if incorrect.) Due to my limited access to parts, I'll likely try using a 555 timer or a couple of 2N2222 transistors. I image this case is where a reset supervisor chip (ADM803) would come in handy.
            $endgroup$
            – Harrito
            yesterday















            0












            $begingroup$

            R18 should go to Vdd, not ground. Otherwise the RESET line will never go high (the diodes can only pull it low).



            Edit: Depending on the logic family you are using, there may be enough diode and stray capacitance in the diodes to cause false resets. Assume HC logic you can shunt R18 with about 20pF. And make sure R18 connects to Vdd (+5V).






            share|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Obviously, if ONE of the counters is resetting, then something is working. We have to assume that the schematic is wrong in that detail. Note the rework on R18 (lower left corner) in the PCB photo.
              $endgroup$
              – Dave Tweed
              yesterday








            • 1




              $begingroup$
              Capacitive kick through the diodes?
              $endgroup$
              – Transistor
              yesterday










            • $begingroup$
              @Transistor Could be. Shunt R18 with ~20pF and make sure it's connected to Vdd. Don't add too much capacitance or other problems may crop up.
              $endgroup$
              – Spehro Pefhany
              yesterday










            • $begingroup$
              Even with the suggested capacitance, this is still not a reliable solution. Now you're counting on the fact that the two counters have exactly the same logic threshold on their reset inputs.
              $endgroup$
              – Dave Tweed
              yesterday










            • $begingroup$
              @DaveTweed Yes, it's probably not a great solution. Your suggestion of a one-shot is much better. If OP does try the above, they should also reduce the resistance of R18 to 2K or so (HC logic) to give the propogation delay a chance to make up for the any difference in logic thresholds (which would tend to reset the slower one only, and the problem is magnified by the slow rise time vs. fast fall time of the diode AND). We used to do ugly things with diodes and capacitors but a one-shot or at least a Schmitt trigger + RC is much more elegant.
              $endgroup$
              – Spehro Pefhany
              yesterday


















            0












            $begingroup$

            R18 should go to Vdd, not ground. Otherwise the RESET line will never go high (the diodes can only pull it low).



            Edit: Depending on the logic family you are using, there may be enough diode and stray capacitance in the diodes to cause false resets. Assume HC logic you can shunt R18 with about 20pF. And make sure R18 connects to Vdd (+5V).






            share|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Obviously, if ONE of the counters is resetting, then something is working. We have to assume that the schematic is wrong in that detail. Note the rework on R18 (lower left corner) in the PCB photo.
              $endgroup$
              – Dave Tweed
              yesterday








            • 1




              $begingroup$
              Capacitive kick through the diodes?
              $endgroup$
              – Transistor
              yesterday










            • $begingroup$
              @Transistor Could be. Shunt R18 with ~20pF and make sure it's connected to Vdd. Don't add too much capacitance or other problems may crop up.
              $endgroup$
              – Spehro Pefhany
              yesterday










            • $begingroup$
              Even with the suggested capacitance, this is still not a reliable solution. Now you're counting on the fact that the two counters have exactly the same logic threshold on their reset inputs.
              $endgroup$
              – Dave Tweed
              yesterday










            • $begingroup$
              @DaveTweed Yes, it's probably not a great solution. Your suggestion of a one-shot is much better. If OP does try the above, they should also reduce the resistance of R18 to 2K or so (HC logic) to give the propogation delay a chance to make up for the any difference in logic thresholds (which would tend to reset the slower one only, and the problem is magnified by the slow rise time vs. fast fall time of the diode AND). We used to do ugly things with diodes and capacitors but a one-shot or at least a Schmitt trigger + RC is much more elegant.
              $endgroup$
              – Spehro Pefhany
              yesterday
















            0












            0








            0





            $begingroup$

            R18 should go to Vdd, not ground. Otherwise the RESET line will never go high (the diodes can only pull it low).



            Edit: Depending on the logic family you are using, there may be enough diode and stray capacitance in the diodes to cause false resets. Assume HC logic you can shunt R18 with about 20pF. And make sure R18 connects to Vdd (+5V).






            share|improve this answer











            $endgroup$



            R18 should go to Vdd, not ground. Otherwise the RESET line will never go high (the diodes can only pull it low).



            Edit: Depending on the logic family you are using, there may be enough diode and stray capacitance in the diodes to cause false resets. Assume HC logic you can shunt R18 with about 20pF. And make sure R18 connects to Vdd (+5V).







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited yesterday

























            answered yesterday









            Spehro PefhanySpehro Pefhany

            211k5162426




            211k5162426








            • 1




              $begingroup$
              Obviously, if ONE of the counters is resetting, then something is working. We have to assume that the schematic is wrong in that detail. Note the rework on R18 (lower left corner) in the PCB photo.
              $endgroup$
              – Dave Tweed
              yesterday








            • 1




              $begingroup$
              Capacitive kick through the diodes?
              $endgroup$
              – Transistor
              yesterday










            • $begingroup$
              @Transistor Could be. Shunt R18 with ~20pF and make sure it's connected to Vdd. Don't add too much capacitance or other problems may crop up.
              $endgroup$
              – Spehro Pefhany
              yesterday










            • $begingroup$
              Even with the suggested capacitance, this is still not a reliable solution. Now you're counting on the fact that the two counters have exactly the same logic threshold on their reset inputs.
              $endgroup$
              – Dave Tweed
              yesterday










            • $begingroup$
              @DaveTweed Yes, it's probably not a great solution. Your suggestion of a one-shot is much better. If OP does try the above, they should also reduce the resistance of R18 to 2K or so (HC logic) to give the propogation delay a chance to make up for the any difference in logic thresholds (which would tend to reset the slower one only, and the problem is magnified by the slow rise time vs. fast fall time of the diode AND). We used to do ugly things with diodes and capacitors but a one-shot or at least a Schmitt trigger + RC is much more elegant.
              $endgroup$
              – Spehro Pefhany
              yesterday
















            • 1




              $begingroup$
              Obviously, if ONE of the counters is resetting, then something is working. We have to assume that the schematic is wrong in that detail. Note the rework on R18 (lower left corner) in the PCB photo.
              $endgroup$
              – Dave Tweed
              yesterday








            • 1




              $begingroup$
              Capacitive kick through the diodes?
              $endgroup$
              – Transistor
              yesterday










            • $begingroup$
              @Transistor Could be. Shunt R18 with ~20pF and make sure it's connected to Vdd. Don't add too much capacitance or other problems may crop up.
              $endgroup$
              – Spehro Pefhany
              yesterday










            • $begingroup$
              Even with the suggested capacitance, this is still not a reliable solution. Now you're counting on the fact that the two counters have exactly the same logic threshold on their reset inputs.
              $endgroup$
              – Dave Tweed
              yesterday










            • $begingroup$
              @DaveTweed Yes, it's probably not a great solution. Your suggestion of a one-shot is much better. If OP does try the above, they should also reduce the resistance of R18 to 2K or so (HC logic) to give the propogation delay a chance to make up for the any difference in logic thresholds (which would tend to reset the slower one only, and the problem is magnified by the slow rise time vs. fast fall time of the diode AND). We used to do ugly things with diodes and capacitors but a one-shot or at least a Schmitt trigger + RC is much more elegant.
              $endgroup$
              – Spehro Pefhany
              yesterday










            1




            1




            $begingroup$
            Obviously, if ONE of the counters is resetting, then something is working. We have to assume that the schematic is wrong in that detail. Note the rework on R18 (lower left corner) in the PCB photo.
            $endgroup$
            – Dave Tweed
            yesterday






            $begingroup$
            Obviously, if ONE of the counters is resetting, then something is working. We have to assume that the schematic is wrong in that detail. Note the rework on R18 (lower left corner) in the PCB photo.
            $endgroup$
            – Dave Tweed
            yesterday






            1




            1




            $begingroup$
            Capacitive kick through the diodes?
            $endgroup$
            – Transistor
            yesterday




            $begingroup$
            Capacitive kick through the diodes?
            $endgroup$
            – Transistor
            yesterday












            $begingroup$
            @Transistor Could be. Shunt R18 with ~20pF and make sure it's connected to Vdd. Don't add too much capacitance or other problems may crop up.
            $endgroup$
            – Spehro Pefhany
            yesterday




            $begingroup$
            @Transistor Could be. Shunt R18 with ~20pF and make sure it's connected to Vdd. Don't add too much capacitance or other problems may crop up.
            $endgroup$
            – Spehro Pefhany
            yesterday












            $begingroup$
            Even with the suggested capacitance, this is still not a reliable solution. Now you're counting on the fact that the two counters have exactly the same logic threshold on their reset inputs.
            $endgroup$
            – Dave Tweed
            yesterday




            $begingroup$
            Even with the suggested capacitance, this is still not a reliable solution. Now you're counting on the fact that the two counters have exactly the same logic threshold on their reset inputs.
            $endgroup$
            – Dave Tweed
            yesterday












            $begingroup$
            @DaveTweed Yes, it's probably not a great solution. Your suggestion of a one-shot is much better. If OP does try the above, they should also reduce the resistance of R18 to 2K or so (HC logic) to give the propogation delay a chance to make up for the any difference in logic thresholds (which would tend to reset the slower one only, and the problem is magnified by the slow rise time vs. fast fall time of the diode AND). We used to do ugly things with diodes and capacitors but a one-shot or at least a Schmitt trigger + RC is much more elegant.
            $endgroup$
            – Spehro Pefhany
            yesterday






            $begingroup$
            @DaveTweed Yes, it's probably not a great solution. Your suggestion of a one-shot is much better. If OP does try the above, they should also reduce the resistance of R18 to 2K or so (HC logic) to give the propogation delay a chance to make up for the any difference in logic thresholds (which would tend to reset the slower one only, and the problem is magnified by the slow rise time vs. fast fall time of the diode AND). We used to do ugly things with diodes and capacitors but a one-shot or at least a Schmitt trigger + RC is much more elegant.
            $endgroup$
            – Spehro Pefhany
            yesterday













            0












            $begingroup$

            For a one-time design you can fix this by increasing the resistor in series with the reset pin of the faster IC , R138 in this case. I would use 10K, leave R6 unchanged. (And use the pull-up resistor others have mentioned.) For a production run you probably have to use a one-shot.






            share|improve this answer








            New contributor




            EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$


















              0












              $begingroup$

              For a one-time design you can fix this by increasing the resistor in series with the reset pin of the faster IC , R138 in this case. I would use 10K, leave R6 unchanged. (And use the pull-up resistor others have mentioned.) For a production run you probably have to use a one-shot.






              share|improve this answer








              New contributor




              EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.






              $endgroup$
















                0












                0








                0





                $begingroup$

                For a one-time design you can fix this by increasing the resistor in series with the reset pin of the faster IC , R138 in this case. I would use 10K, leave R6 unchanged. (And use the pull-up resistor others have mentioned.) For a production run you probably have to use a one-shot.






                share|improve this answer








                New contributor




                EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$



                For a one-time design you can fix this by increasing the resistor in series with the reset pin of the faster IC , R138 in this case. I would use 10K, leave R6 unchanged. (And use the pull-up resistor others have mentioned.) For a production run you probably have to use a one-shot.







                share|improve this answer








                New contributor




                EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                share|improve this answer



                share|improve this answer






                New contributor




                EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                answered 1 hour ago









                EinarAEinarA

                11




                11




                New contributor




                EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.





                New contributor





                EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                EinarA is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






















                    Harrito is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    Harrito is a new contributor. Be nice, and check out our Code of Conduct.













                    Harrito is a new contributor. Be nice, and check out our Code of Conduct.












                    Harrito is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429021%2fresetting-two-cd4017-counters-simultaneously-only-one-resets%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                    Bunad

                    Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum