Determining and justifying the validity of an argument












2












$begingroup$


Context: Question made up by uni lecturer



Original statement: There exists two positive real numbers $x$ and $y$ such that for all positive integers $z$, $frac{x}{y}>z$.



So the question was to find the negation of the statement, and then determine whether the original statement or its negation was true.



I found its negation to be: For all positive real numbers $x$ and $y$, there exists a positive integer $z$ such that $frac{x}{y}le z$.



The lecturer's solution to the question says that the negation is true since for any positive reals $x$ and $y$, you can choose $z$ to equal the ceiling of $frac{x}{y}$.



When I attempted the question myself, I said that the original statement is true because you can take $x=z+1$ (which would be a positive integer that still belongs to the set of all positive real numbers) and $y=1$ (which is a positive real number), as $frac{x}{y}=frac{z+1}{1}=z+1>z$.



Can someone please help me to see the error in my answer.



Thanks










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Context: Question made up by uni lecturer



    Original statement: There exists two positive real numbers $x$ and $y$ such that for all positive integers $z$, $frac{x}{y}>z$.



    So the question was to find the negation of the statement, and then determine whether the original statement or its negation was true.



    I found its negation to be: For all positive real numbers $x$ and $y$, there exists a positive integer $z$ such that $frac{x}{y}le z$.



    The lecturer's solution to the question says that the negation is true since for any positive reals $x$ and $y$, you can choose $z$ to equal the ceiling of $frac{x}{y}$.



    When I attempted the question myself, I said that the original statement is true because you can take $x=z+1$ (which would be a positive integer that still belongs to the set of all positive real numbers) and $y=1$ (which is a positive real number), as $frac{x}{y}=frac{z+1}{1}=z+1>z$.



    Can someone please help me to see the error in my answer.



    Thanks










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Context: Question made up by uni lecturer



      Original statement: There exists two positive real numbers $x$ and $y$ such that for all positive integers $z$, $frac{x}{y}>z$.



      So the question was to find the negation of the statement, and then determine whether the original statement or its negation was true.



      I found its negation to be: For all positive real numbers $x$ and $y$, there exists a positive integer $z$ such that $frac{x}{y}le z$.



      The lecturer's solution to the question says that the negation is true since for any positive reals $x$ and $y$, you can choose $z$ to equal the ceiling of $frac{x}{y}$.



      When I attempted the question myself, I said that the original statement is true because you can take $x=z+1$ (which would be a positive integer that still belongs to the set of all positive real numbers) and $y=1$ (which is a positive real number), as $frac{x}{y}=frac{z+1}{1}=z+1>z$.



      Can someone please help me to see the error in my answer.



      Thanks










      share|cite|improve this question









      $endgroup$




      Context: Question made up by uni lecturer



      Original statement: There exists two positive real numbers $x$ and $y$ such that for all positive integers $z$, $frac{x}{y}>z$.



      So the question was to find the negation of the statement, and then determine whether the original statement or its negation was true.



      I found its negation to be: For all positive real numbers $x$ and $y$, there exists a positive integer $z$ such that $frac{x}{y}le z$.



      The lecturer's solution to the question says that the negation is true since for any positive reals $x$ and $y$, you can choose $z$ to equal the ceiling of $frac{x}{y}$.



      When I attempted the question myself, I said that the original statement is true because you can take $x=z+1$ (which would be a positive integer that still belongs to the set of all positive real numbers) and $y=1$ (which is a positive real number), as $frac{x}{y}=frac{z+1}{1}=z+1>z$.



      Can someone please help me to see the error in my answer.



      Thanks







      discrete-mathematics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 18 hours ago









      Ruby PaRuby Pa

      376




      376






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The problem with your reasoning is the order. There exist $x,y$ positive integers such that for all positive integers $z$ we have $frac{x}{y}>z$, so first you must pick an $x$ and a $y$, and then you must test whether $frac{x}{y}>z$ for every positive integer $z$. Therefore you can't define $x=z+1$ as when you pick $x$ you don't know $z$ yet.






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$


            "There exists two positive real numbers $x$ and $y$ such that for all positive integer $z$ : $dfrac x y > z$"




            The intuition says that it is False. $dfrac x y$ is a positive real; thus, the statement amounts to asserting that there is a real that is greater than every integer, which is not.



            You reasoning is wrong because you have swapped the choice of the numbers : you start from $z$ and choose $x$ and $y$ accordingly.



            The negation of the original statement is : $forall x forall y exists z (dfrac y y le z)$.



            Thus, choose $x$ and $y$ positive whatever and what you get is a new positive real $dfrac x y$.



            Now, you have to choose an integer $z$ (obviously positive) that is greater-or-equal to $dfrac x y$.



            And this must be always possible, because $dfrac x y$ is a number $r.r_1 r_2 r_3 ldots$.



            Consider as $z$ the number $r+1$ and it's done.






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163151%2fdetermining-and-justifying-the-validity-of-an-argument%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              The problem with your reasoning is the order. There exist $x,y$ positive integers such that for all positive integers $z$ we have $frac{x}{y}>z$, so first you must pick an $x$ and a $y$, and then you must test whether $frac{x}{y}>z$ for every positive integer $z$. Therefore you can't define $x=z+1$ as when you pick $x$ you don't know $z$ yet.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                The problem with your reasoning is the order. There exist $x,y$ positive integers such that for all positive integers $z$ we have $frac{x}{y}>z$, so first you must pick an $x$ and a $y$, and then you must test whether $frac{x}{y}>z$ for every positive integer $z$. Therefore you can't define $x=z+1$ as when you pick $x$ you don't know $z$ yet.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  The problem with your reasoning is the order. There exist $x,y$ positive integers such that for all positive integers $z$ we have $frac{x}{y}>z$, so first you must pick an $x$ and a $y$, and then you must test whether $frac{x}{y}>z$ for every positive integer $z$. Therefore you can't define $x=z+1$ as when you pick $x$ you don't know $z$ yet.






                  share|cite|improve this answer









                  $endgroup$



                  The problem with your reasoning is the order. There exist $x,y$ positive integers such that for all positive integers $z$ we have $frac{x}{y}>z$, so first you must pick an $x$ and a $y$, and then you must test whether $frac{x}{y}>z$ for every positive integer $z$. Therefore you can't define $x=z+1$ as when you pick $x$ you don't know $z$ yet.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 18 hours ago









                  Floris ClaassensFloris Claassens

                  1,13927




                  1,13927























                      3












                      $begingroup$


                      "There exists two positive real numbers $x$ and $y$ such that for all positive integer $z$ : $dfrac x y > z$"




                      The intuition says that it is False. $dfrac x y$ is a positive real; thus, the statement amounts to asserting that there is a real that is greater than every integer, which is not.



                      You reasoning is wrong because you have swapped the choice of the numbers : you start from $z$ and choose $x$ and $y$ accordingly.



                      The negation of the original statement is : $forall x forall y exists z (dfrac y y le z)$.



                      Thus, choose $x$ and $y$ positive whatever and what you get is a new positive real $dfrac x y$.



                      Now, you have to choose an integer $z$ (obviously positive) that is greater-or-equal to $dfrac x y$.



                      And this must be always possible, because $dfrac x y$ is a number $r.r_1 r_2 r_3 ldots$.



                      Consider as $z$ the number $r+1$ and it's done.






                      share|cite|improve this answer











                      $endgroup$


















                        3












                        $begingroup$


                        "There exists two positive real numbers $x$ and $y$ such that for all positive integer $z$ : $dfrac x y > z$"




                        The intuition says that it is False. $dfrac x y$ is a positive real; thus, the statement amounts to asserting that there is a real that is greater than every integer, which is not.



                        You reasoning is wrong because you have swapped the choice of the numbers : you start from $z$ and choose $x$ and $y$ accordingly.



                        The negation of the original statement is : $forall x forall y exists z (dfrac y y le z)$.



                        Thus, choose $x$ and $y$ positive whatever and what you get is a new positive real $dfrac x y$.



                        Now, you have to choose an integer $z$ (obviously positive) that is greater-or-equal to $dfrac x y$.



                        And this must be always possible, because $dfrac x y$ is a number $r.r_1 r_2 r_3 ldots$.



                        Consider as $z$ the number $r+1$ and it's done.






                        share|cite|improve this answer











                        $endgroup$
















                          3












                          3








                          3





                          $begingroup$


                          "There exists two positive real numbers $x$ and $y$ such that for all positive integer $z$ : $dfrac x y > z$"




                          The intuition says that it is False. $dfrac x y$ is a positive real; thus, the statement amounts to asserting that there is a real that is greater than every integer, which is not.



                          You reasoning is wrong because you have swapped the choice of the numbers : you start from $z$ and choose $x$ and $y$ accordingly.



                          The negation of the original statement is : $forall x forall y exists z (dfrac y y le z)$.



                          Thus, choose $x$ and $y$ positive whatever and what you get is a new positive real $dfrac x y$.



                          Now, you have to choose an integer $z$ (obviously positive) that is greater-or-equal to $dfrac x y$.



                          And this must be always possible, because $dfrac x y$ is a number $r.r_1 r_2 r_3 ldots$.



                          Consider as $z$ the number $r+1$ and it's done.






                          share|cite|improve this answer











                          $endgroup$




                          "There exists two positive real numbers $x$ and $y$ such that for all positive integer $z$ : $dfrac x y > z$"




                          The intuition says that it is False. $dfrac x y$ is a positive real; thus, the statement amounts to asserting that there is a real that is greater than every integer, which is not.



                          You reasoning is wrong because you have swapped the choice of the numbers : you start from $z$ and choose $x$ and $y$ accordingly.



                          The negation of the original statement is : $forall x forall y exists z (dfrac y y le z)$.



                          Thus, choose $x$ and $y$ positive whatever and what you get is a new positive real $dfrac x y$.



                          Now, you have to choose an integer $z$ (obviously positive) that is greater-or-equal to $dfrac x y$.



                          And this must be always possible, because $dfrac x y$ is a number $r.r_1 r_2 r_3 ldots$.



                          Consider as $z$ the number $r+1$ and it's done.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 18 hours ago

























                          answered 18 hours ago









                          Mauro ALLEGRANZAMauro ALLEGRANZA

                          67.5k449116




                          67.5k449116






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163151%2fdetermining-and-justifying-the-validity-of-an-argument%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bruad Bilen | Luke uk diar | NawigatsjuunCommonskategorii: BruadCommonskategorii: RunstükenWikiquote: Bruad

                              What is the offset in a seaplane's hull?

                              Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029