Could you calculate the variance of data using the median or something other than the mean?












7












$begingroup$


Could we calculate the variance without using the mean as the 'base' point?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Given $mathbb{E}(X^2)<infty$, the variance is given by $sigma^2 = mathbb{E}((X-mathbb{E}(X))^2)$ by definition. The formular simplifies to $sigma^2 =mathbb{E}(X^2) - mathbb{E}(X)^2$. I.e., for the variance you need $mathbb{E}(X)$. Of course you could define your own dispersion measure using some other statistic...or use one from the answers.
    $endgroup$
    – BloXX
    18 hours ago








  • 5




    $begingroup$
    Short answer: Lots of other ways to summarize variability (dispersion, spread, scale) but none of the others would be the variance. (In fact, the variance can be defined without reference to the mean.)
    $endgroup$
    – Nick Cox
    17 hours ago






  • 3




    $begingroup$
    Yes: given data $X,$ compute the covariance of $(X,X)$ as described at stats.stackexchange.com/a/18200/919. This method never computes the mean.
    $endgroup$
    – whuber
    12 hours ago
















7












$begingroup$


Could we calculate the variance without using the mean as the 'base' point?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Given $mathbb{E}(X^2)<infty$, the variance is given by $sigma^2 = mathbb{E}((X-mathbb{E}(X))^2)$ by definition. The formular simplifies to $sigma^2 =mathbb{E}(X^2) - mathbb{E}(X)^2$. I.e., for the variance you need $mathbb{E}(X)$. Of course you could define your own dispersion measure using some other statistic...or use one from the answers.
    $endgroup$
    – BloXX
    18 hours ago








  • 5




    $begingroup$
    Short answer: Lots of other ways to summarize variability (dispersion, spread, scale) but none of the others would be the variance. (In fact, the variance can be defined without reference to the mean.)
    $endgroup$
    – Nick Cox
    17 hours ago






  • 3




    $begingroup$
    Yes: given data $X,$ compute the covariance of $(X,X)$ as described at stats.stackexchange.com/a/18200/919. This method never computes the mean.
    $endgroup$
    – whuber
    12 hours ago














7












7








7


1



$begingroup$


Could we calculate the variance without using the mean as the 'base' point?










share|cite|improve this question











$endgroup$




Could we calculate the variance without using the mean as the 'base' point?







mathematical-statistics variance mean median scale-estimator






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 9 hours ago









Ferdi

3,86742355




3,86742355










asked 18 hours ago









WillWill

411




411








  • 3




    $begingroup$
    Given $mathbb{E}(X^2)<infty$, the variance is given by $sigma^2 = mathbb{E}((X-mathbb{E}(X))^2)$ by definition. The formular simplifies to $sigma^2 =mathbb{E}(X^2) - mathbb{E}(X)^2$. I.e., for the variance you need $mathbb{E}(X)$. Of course you could define your own dispersion measure using some other statistic...or use one from the answers.
    $endgroup$
    – BloXX
    18 hours ago








  • 5




    $begingroup$
    Short answer: Lots of other ways to summarize variability (dispersion, spread, scale) but none of the others would be the variance. (In fact, the variance can be defined without reference to the mean.)
    $endgroup$
    – Nick Cox
    17 hours ago






  • 3




    $begingroup$
    Yes: given data $X,$ compute the covariance of $(X,X)$ as described at stats.stackexchange.com/a/18200/919. This method never computes the mean.
    $endgroup$
    – whuber
    12 hours ago














  • 3




    $begingroup$
    Given $mathbb{E}(X^2)<infty$, the variance is given by $sigma^2 = mathbb{E}((X-mathbb{E}(X))^2)$ by definition. The formular simplifies to $sigma^2 =mathbb{E}(X^2) - mathbb{E}(X)^2$. I.e., for the variance you need $mathbb{E}(X)$. Of course you could define your own dispersion measure using some other statistic...or use one from the answers.
    $endgroup$
    – BloXX
    18 hours ago








  • 5




    $begingroup$
    Short answer: Lots of other ways to summarize variability (dispersion, spread, scale) but none of the others would be the variance. (In fact, the variance can be defined without reference to the mean.)
    $endgroup$
    – Nick Cox
    17 hours ago






  • 3




    $begingroup$
    Yes: given data $X,$ compute the covariance of $(X,X)$ as described at stats.stackexchange.com/a/18200/919. This method never computes the mean.
    $endgroup$
    – whuber
    12 hours ago








3




3




$begingroup$
Given $mathbb{E}(X^2)<infty$, the variance is given by $sigma^2 = mathbb{E}((X-mathbb{E}(X))^2)$ by definition. The formular simplifies to $sigma^2 =mathbb{E}(X^2) - mathbb{E}(X)^2$. I.e., for the variance you need $mathbb{E}(X)$. Of course you could define your own dispersion measure using some other statistic...or use one from the answers.
$endgroup$
– BloXX
18 hours ago






$begingroup$
Given $mathbb{E}(X^2)<infty$, the variance is given by $sigma^2 = mathbb{E}((X-mathbb{E}(X))^2)$ by definition. The formular simplifies to $sigma^2 =mathbb{E}(X^2) - mathbb{E}(X)^2$. I.e., for the variance you need $mathbb{E}(X)$. Of course you could define your own dispersion measure using some other statistic...or use one from the answers.
$endgroup$
– BloXX
18 hours ago






5




5




$begingroup$
Short answer: Lots of other ways to summarize variability (dispersion, spread, scale) but none of the others would be the variance. (In fact, the variance can be defined without reference to the mean.)
$endgroup$
– Nick Cox
17 hours ago




$begingroup$
Short answer: Lots of other ways to summarize variability (dispersion, spread, scale) but none of the others would be the variance. (In fact, the variance can be defined without reference to the mean.)
$endgroup$
– Nick Cox
17 hours ago




3




3




$begingroup$
Yes: given data $X,$ compute the covariance of $(X,X)$ as described at stats.stackexchange.com/a/18200/919. This method never computes the mean.
$endgroup$
– whuber
12 hours ago




$begingroup$
Yes: given data $X,$ compute the covariance of $(X,X)$ as described at stats.stackexchange.com/a/18200/919. This method never computes the mean.
$endgroup$
– whuber
12 hours ago










2 Answers
2






active

oldest

votes


















11












$begingroup$

The median absolute deviation is defined as
$$text{MAD}(X) = text{median} |X-text{median}(X)|$$
and is considered an alternative to the standard deviation. But this is not the variance. In particular, it always exists, whether or not $X$ allows for moments. For instance, the MAD of a standard Cauchy is equal to one since
$$underbrace{Bbb P(|X-0|<1)}_text{0 is the median}=arctan(1)/pi-arctan(-1)/pi=frac{1}{2}$$






share|cite|improve this answer











$endgroup$









  • 7




    $begingroup$
    Newcomers to this idea should watch out also for mean absolute deviation from the mean (mean deviation, often) and median absolute deviation from the mean. I don't recall mean absolute deviation from the median, but am open to examples. The abbreviation MAD, unfortunately, has been applied variously, so trust people's code first, then their algebraic or verbal definition, but use of an abbreviation MAD only not at all. In symmetric distributions, and some others, MAD as defined here is half the interquartile range. (Punning on MAD I resist as a little too obvious.)
    $endgroup$
    – Nick Cox
    17 hours ago








  • 3




    $begingroup$
    Also, note that software implementations of the median absolute deviation function can scale the MAD value by a constant factor from the form presented in this answer, so that its value coincides with the standard deviation for a normal distribution.
    $endgroup$
    – EdM
    17 hours ago










  • $begingroup$
    @EdM Excellent point. Personally I dislike that practice unless people use some different term. It's no longer the MAD!
    $endgroup$
    – Nick Cox
    17 hours ago






  • 1




    $begingroup$
    @NickCox: the appeal of centring on the median is that the quantity always exists, whether or not the distribution enjoys a mean. This is the definition found in Wikipedia.
    $endgroup$
    – Xi'an
    16 hours ago










  • $begingroup$
    MAD is Mutually Assured Destruction
    $endgroup$
    – kjetil b halvorsen
    15 hours ago



















3












$begingroup$

There is already a solution for this question on Math.stackexchange:



I summarize the answers:




  1. You can use that the variance is $overline{x^2} - overline {x}^2$, which takes only one pass (computing the mean and the mean of the squares simultaneously), but can be more prone to roundoff error if the variance is small compared with the mean.





  1. How about sum of squared pairwise differences ? Indeed, you can check by direct computation that


$$
2v_X = frac{1}{n(n-1)}sum_{1 le i < j le n}(x_i - x_j)^2.
$$






  1. The sample variance without mean is calculated as:
    $$ v_{X}=frac{1}{n-1}left [ sum_{i=1}^{n}x_{i}^{2}-frac{1}{n}left ( sum_{i=1}^{n}x_{i} right ) ^{2}right ] $$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "65"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f399445%2fcould-you-calculate-the-variance-of-data-using-the-median-or-something-other-tha%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    The median absolute deviation is defined as
    $$text{MAD}(X) = text{median} |X-text{median}(X)|$$
    and is considered an alternative to the standard deviation. But this is not the variance. In particular, it always exists, whether or not $X$ allows for moments. For instance, the MAD of a standard Cauchy is equal to one since
    $$underbrace{Bbb P(|X-0|<1)}_text{0 is the median}=arctan(1)/pi-arctan(-1)/pi=frac{1}{2}$$






    share|cite|improve this answer











    $endgroup$









    • 7




      $begingroup$
      Newcomers to this idea should watch out also for mean absolute deviation from the mean (mean deviation, often) and median absolute deviation from the mean. I don't recall mean absolute deviation from the median, but am open to examples. The abbreviation MAD, unfortunately, has been applied variously, so trust people's code first, then their algebraic or verbal definition, but use of an abbreviation MAD only not at all. In symmetric distributions, and some others, MAD as defined here is half the interquartile range. (Punning on MAD I resist as a little too obvious.)
      $endgroup$
      – Nick Cox
      17 hours ago








    • 3




      $begingroup$
      Also, note that software implementations of the median absolute deviation function can scale the MAD value by a constant factor from the form presented in this answer, so that its value coincides with the standard deviation for a normal distribution.
      $endgroup$
      – EdM
      17 hours ago










    • $begingroup$
      @EdM Excellent point. Personally I dislike that practice unless people use some different term. It's no longer the MAD!
      $endgroup$
      – Nick Cox
      17 hours ago






    • 1




      $begingroup$
      @NickCox: the appeal of centring on the median is that the quantity always exists, whether or not the distribution enjoys a mean. This is the definition found in Wikipedia.
      $endgroup$
      – Xi'an
      16 hours ago










    • $begingroup$
      MAD is Mutually Assured Destruction
      $endgroup$
      – kjetil b halvorsen
      15 hours ago
















    11












    $begingroup$

    The median absolute deviation is defined as
    $$text{MAD}(X) = text{median} |X-text{median}(X)|$$
    and is considered an alternative to the standard deviation. But this is not the variance. In particular, it always exists, whether or not $X$ allows for moments. For instance, the MAD of a standard Cauchy is equal to one since
    $$underbrace{Bbb P(|X-0|<1)}_text{0 is the median}=arctan(1)/pi-arctan(-1)/pi=frac{1}{2}$$






    share|cite|improve this answer











    $endgroup$









    • 7




      $begingroup$
      Newcomers to this idea should watch out also for mean absolute deviation from the mean (mean deviation, often) and median absolute deviation from the mean. I don't recall mean absolute deviation from the median, but am open to examples. The abbreviation MAD, unfortunately, has been applied variously, so trust people's code first, then their algebraic or verbal definition, but use of an abbreviation MAD only not at all. In symmetric distributions, and some others, MAD as defined here is half the interquartile range. (Punning on MAD I resist as a little too obvious.)
      $endgroup$
      – Nick Cox
      17 hours ago








    • 3




      $begingroup$
      Also, note that software implementations of the median absolute deviation function can scale the MAD value by a constant factor from the form presented in this answer, so that its value coincides with the standard deviation for a normal distribution.
      $endgroup$
      – EdM
      17 hours ago










    • $begingroup$
      @EdM Excellent point. Personally I dislike that practice unless people use some different term. It's no longer the MAD!
      $endgroup$
      – Nick Cox
      17 hours ago






    • 1




      $begingroup$
      @NickCox: the appeal of centring on the median is that the quantity always exists, whether or not the distribution enjoys a mean. This is the definition found in Wikipedia.
      $endgroup$
      – Xi'an
      16 hours ago










    • $begingroup$
      MAD is Mutually Assured Destruction
      $endgroup$
      – kjetil b halvorsen
      15 hours ago














    11












    11








    11





    $begingroup$

    The median absolute deviation is defined as
    $$text{MAD}(X) = text{median} |X-text{median}(X)|$$
    and is considered an alternative to the standard deviation. But this is not the variance. In particular, it always exists, whether or not $X$ allows for moments. For instance, the MAD of a standard Cauchy is equal to one since
    $$underbrace{Bbb P(|X-0|<1)}_text{0 is the median}=arctan(1)/pi-arctan(-1)/pi=frac{1}{2}$$






    share|cite|improve this answer











    $endgroup$



    The median absolute deviation is defined as
    $$text{MAD}(X) = text{median} |X-text{median}(X)|$$
    and is considered an alternative to the standard deviation. But this is not the variance. In particular, it always exists, whether or not $X$ allows for moments. For instance, the MAD of a standard Cauchy is equal to one since
    $$underbrace{Bbb P(|X-0|<1)}_text{0 is the median}=arctan(1)/pi-arctan(-1)/pi=frac{1}{2}$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 13 hours ago









    ukemi

    1053




    1053










    answered 17 hours ago









    Xi'anXi'an

    58.9k897364




    58.9k897364








    • 7




      $begingroup$
      Newcomers to this idea should watch out also for mean absolute deviation from the mean (mean deviation, often) and median absolute deviation from the mean. I don't recall mean absolute deviation from the median, but am open to examples. The abbreviation MAD, unfortunately, has been applied variously, so trust people's code first, then their algebraic or verbal definition, but use of an abbreviation MAD only not at all. In symmetric distributions, and some others, MAD as defined here is half the interquartile range. (Punning on MAD I resist as a little too obvious.)
      $endgroup$
      – Nick Cox
      17 hours ago








    • 3




      $begingroup$
      Also, note that software implementations of the median absolute deviation function can scale the MAD value by a constant factor from the form presented in this answer, so that its value coincides with the standard deviation for a normal distribution.
      $endgroup$
      – EdM
      17 hours ago










    • $begingroup$
      @EdM Excellent point. Personally I dislike that practice unless people use some different term. It's no longer the MAD!
      $endgroup$
      – Nick Cox
      17 hours ago






    • 1




      $begingroup$
      @NickCox: the appeal of centring on the median is that the quantity always exists, whether or not the distribution enjoys a mean. This is the definition found in Wikipedia.
      $endgroup$
      – Xi'an
      16 hours ago










    • $begingroup$
      MAD is Mutually Assured Destruction
      $endgroup$
      – kjetil b halvorsen
      15 hours ago














    • 7




      $begingroup$
      Newcomers to this idea should watch out also for mean absolute deviation from the mean (mean deviation, often) and median absolute deviation from the mean. I don't recall mean absolute deviation from the median, but am open to examples. The abbreviation MAD, unfortunately, has been applied variously, so trust people's code first, then their algebraic or verbal definition, but use of an abbreviation MAD only not at all. In symmetric distributions, and some others, MAD as defined here is half the interquartile range. (Punning on MAD I resist as a little too obvious.)
      $endgroup$
      – Nick Cox
      17 hours ago








    • 3




      $begingroup$
      Also, note that software implementations of the median absolute deviation function can scale the MAD value by a constant factor from the form presented in this answer, so that its value coincides with the standard deviation for a normal distribution.
      $endgroup$
      – EdM
      17 hours ago










    • $begingroup$
      @EdM Excellent point. Personally I dislike that practice unless people use some different term. It's no longer the MAD!
      $endgroup$
      – Nick Cox
      17 hours ago






    • 1




      $begingroup$
      @NickCox: the appeal of centring on the median is that the quantity always exists, whether or not the distribution enjoys a mean. This is the definition found in Wikipedia.
      $endgroup$
      – Xi'an
      16 hours ago










    • $begingroup$
      MAD is Mutually Assured Destruction
      $endgroup$
      – kjetil b halvorsen
      15 hours ago








    7




    7




    $begingroup$
    Newcomers to this idea should watch out also for mean absolute deviation from the mean (mean deviation, often) and median absolute deviation from the mean. I don't recall mean absolute deviation from the median, but am open to examples. The abbreviation MAD, unfortunately, has been applied variously, so trust people's code first, then their algebraic or verbal definition, but use of an abbreviation MAD only not at all. In symmetric distributions, and some others, MAD as defined here is half the interquartile range. (Punning on MAD I resist as a little too obvious.)
    $endgroup$
    – Nick Cox
    17 hours ago






    $begingroup$
    Newcomers to this idea should watch out also for mean absolute deviation from the mean (mean deviation, often) and median absolute deviation from the mean. I don't recall mean absolute deviation from the median, but am open to examples. The abbreviation MAD, unfortunately, has been applied variously, so trust people's code first, then their algebraic or verbal definition, but use of an abbreviation MAD only not at all. In symmetric distributions, and some others, MAD as defined here is half the interquartile range. (Punning on MAD I resist as a little too obvious.)
    $endgroup$
    – Nick Cox
    17 hours ago






    3




    3




    $begingroup$
    Also, note that software implementations of the median absolute deviation function can scale the MAD value by a constant factor from the form presented in this answer, so that its value coincides with the standard deviation for a normal distribution.
    $endgroup$
    – EdM
    17 hours ago




    $begingroup$
    Also, note that software implementations of the median absolute deviation function can scale the MAD value by a constant factor from the form presented in this answer, so that its value coincides with the standard deviation for a normal distribution.
    $endgroup$
    – EdM
    17 hours ago












    $begingroup$
    @EdM Excellent point. Personally I dislike that practice unless people use some different term. It's no longer the MAD!
    $endgroup$
    – Nick Cox
    17 hours ago




    $begingroup$
    @EdM Excellent point. Personally I dislike that practice unless people use some different term. It's no longer the MAD!
    $endgroup$
    – Nick Cox
    17 hours ago




    1




    1




    $begingroup$
    @NickCox: the appeal of centring on the median is that the quantity always exists, whether or not the distribution enjoys a mean. This is the definition found in Wikipedia.
    $endgroup$
    – Xi'an
    16 hours ago




    $begingroup$
    @NickCox: the appeal of centring on the median is that the quantity always exists, whether or not the distribution enjoys a mean. This is the definition found in Wikipedia.
    $endgroup$
    – Xi'an
    16 hours ago












    $begingroup$
    MAD is Mutually Assured Destruction
    $endgroup$
    – kjetil b halvorsen
    15 hours ago




    $begingroup$
    MAD is Mutually Assured Destruction
    $endgroup$
    – kjetil b halvorsen
    15 hours ago













    3












    $begingroup$

    There is already a solution for this question on Math.stackexchange:



    I summarize the answers:




    1. You can use that the variance is $overline{x^2} - overline {x}^2$, which takes only one pass (computing the mean and the mean of the squares simultaneously), but can be more prone to roundoff error if the variance is small compared with the mean.





    1. How about sum of squared pairwise differences ? Indeed, you can check by direct computation that


    $$
    2v_X = frac{1}{n(n-1)}sum_{1 le i < j le n}(x_i - x_j)^2.
    $$






    1. The sample variance without mean is calculated as:
      $$ v_{X}=frac{1}{n-1}left [ sum_{i=1}^{n}x_{i}^{2}-frac{1}{n}left ( sum_{i=1}^{n}x_{i} right ) ^{2}right ] $$






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      There is already a solution for this question on Math.stackexchange:



      I summarize the answers:




      1. You can use that the variance is $overline{x^2} - overline {x}^2$, which takes only one pass (computing the mean and the mean of the squares simultaneously), but can be more prone to roundoff error if the variance is small compared with the mean.





      1. How about sum of squared pairwise differences ? Indeed, you can check by direct computation that


      $$
      2v_X = frac{1}{n(n-1)}sum_{1 le i < j le n}(x_i - x_j)^2.
      $$






      1. The sample variance without mean is calculated as:
        $$ v_{X}=frac{1}{n-1}left [ sum_{i=1}^{n}x_{i}^{2}-frac{1}{n}left ( sum_{i=1}^{n}x_{i} right ) ^{2}right ] $$






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        There is already a solution for this question on Math.stackexchange:



        I summarize the answers:




        1. You can use that the variance is $overline{x^2} - overline {x}^2$, which takes only one pass (computing the mean and the mean of the squares simultaneously), but can be more prone to roundoff error if the variance is small compared with the mean.





        1. How about sum of squared pairwise differences ? Indeed, you can check by direct computation that


        $$
        2v_X = frac{1}{n(n-1)}sum_{1 le i < j le n}(x_i - x_j)^2.
        $$






        1. The sample variance without mean is calculated as:
          $$ v_{X}=frac{1}{n-1}left [ sum_{i=1}^{n}x_{i}^{2}-frac{1}{n}left ( sum_{i=1}^{n}x_{i} right ) ^{2}right ] $$






        share|cite|improve this answer











        $endgroup$



        There is already a solution for this question on Math.stackexchange:



        I summarize the answers:




        1. You can use that the variance is $overline{x^2} - overline {x}^2$, which takes only one pass (computing the mean and the mean of the squares simultaneously), but can be more prone to roundoff error if the variance is small compared with the mean.





        1. How about sum of squared pairwise differences ? Indeed, you can check by direct computation that


        $$
        2v_X = frac{1}{n(n-1)}sum_{1 le i < j le n}(x_i - x_j)^2.
        $$






        1. The sample variance without mean is calculated as:
          $$ v_{X}=frac{1}{n-1}left [ sum_{i=1}^{n}x_{i}^{2}-frac{1}{n}left ( sum_{i=1}^{n}x_{i} right ) ^{2}right ] $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 8 hours ago

























        answered 9 hours ago









        FerdiFerdi

        3,86742355




        3,86742355






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f399445%2fcould-you-calculate-the-variance-of-data-using-the-median-or-something-other-tha%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

            He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

            Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029