Logistic function with a slope but no asymptotes?Has Arcsinh ever been considered as a neural network activation function?Effect of e when using the Sigmoid Function as an activation functionApproximation of Δoutput in context of Sigmoid functionModification of Sigmoid functionFinding the center of a logistic curveInput and Output range of the composition of Gaussian and Sigmoidal functions and it's entropyFinding the slope at different points in a sigmoid curveQuestion about Sigmoid Function in Logistic RegressionHas Arcsinh ever been considered as a neural network activation function?The link between logistic regression and logistic sigmoidHow can I even out the output of the sigmoid function?

Would a high gravity rocky planet be guaranteed to have an atmosphere?

Pole-zeros of a real-valued causal FIR system

How do I go from 300 unfinished/half written blog posts, to published posts?

How can I quit an app using Terminal?

Crossing the line between justified force and brutality

What is the difference between "behavior" and "behaviour"?

Customer Requests (Sometimes) Drive Me Bonkers!

How does the UK government determine the size of a mandate?

Lay out the Carpet

Can "Reverse Gravity" affect spells?

What can we do to stop prior company from asking us questions?

Is the destination of a commercial flight important for the pilot?

Increase performance creating Mandelbrot set in python

Short story about space worker geeks who zone out by 'listening' to radiation from stars

How to create a 32-bit integer from eight (8) 4-bit integers?

Was Spock the First Vulcan in Starfleet?

How do I rename a Linux host without needing to reboot for the rename to take effect?

How do we know the LHC results are robust?

How easy is it to start Magic from scratch?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Energy of the particles in the particle accelerator

Opposite of a diet

How does it work when somebody invests in my business?



Logistic function with a slope but no asymptotes?


Has Arcsinh ever been considered as a neural network activation function?Effect of e when using the Sigmoid Function as an activation functionApproximation of Δoutput in context of Sigmoid functionModification of Sigmoid functionFinding the center of a logistic curveInput and Output range of the composition of Gaussian and Sigmoidal functions and it's entropyFinding the slope at different points in a sigmoid curveQuestion about Sigmoid Function in Logistic RegressionHas Arcsinh ever been considered as a neural network activation function?The link between logistic regression and logistic sigmoidHow can I even out the output of the sigmoid function?













8












$begingroup$


The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39
















8












$begingroup$


The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39














8












8








8





$begingroup$


The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?










share|cite|improve this question











$endgroup$




The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?







sigmoid-curve






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 21 at 6:33









Neil G

9,85013070




9,85013070










asked Mar 20 at 15:44









AksakalAksakal

39k452120




39k452120







  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39













  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39








2




2




$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
Mar 20 at 16:17




$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
Mar 20 at 16:17












$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
Mar 20 at 16:24




$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
Mar 20 at 16:24












$begingroup$
Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
$endgroup$
– Aksakal
Mar 20 at 16:31




$begingroup$
Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
$endgroup$
– Aksakal
Mar 20 at 16:31




6




6




$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
Mar 20 at 16:42





$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
Mar 20 at 16:42





4




4




$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
Mar 20 at 21:39





$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
Mar 20 at 21:39











3 Answers
3






active

oldest

votes


















10












$begingroup$

You could just add a term to a logistic function:



$$
f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
$$



The asymptotes will have slopes $d$.



Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



Sigmoid






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
    $endgroup$
    – user1717828
    Mar 21 at 1:30










  • $begingroup$
    this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
    $endgroup$
    – Aksakal
    Mar 22 at 10:46


















11












$begingroup$

Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
$$
textasinh(x) = logleft(x + sqrt1 + x^2right)
$$



This is unbounded but grows like $log$ for large $|x|$ and looks like
asinh



I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




Original answer



$newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
$$
lim_xtopm infty f(x) = 0.
$$



Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
$$
exists x_1 : x < x_1 implies |f(x)| < e
$$

and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



This means that any such function can't be continuous. Would something like
$$
f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
$$
work?






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
    $endgroup$
    – Sycorax
    Mar 20 at 18:52











  • $begingroup$
    My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
    $endgroup$
    – Ingolifs
    Mar 20 at 23:41










  • $begingroup$
    how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
    $endgroup$
    – Aksakal
    Mar 22 at 10:48










  • $begingroup$
    @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
    $endgroup$
    – jld
    Mar 22 at 17:04











  • $begingroup$
    @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
    $endgroup$
    – jld
    Mar 22 at 17:29



















6












$begingroup$

I will go ahead and turn the comment into an answer. I suggest
$$
f(x) = operatornamesign(x)logleft(1 + ,
$$

which has slope tending towards zero, but is unbounded.



edit by popular demand, a plot, for $|x|le 30$:
enter image description here






share|cite|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398551%2flogistic-function-with-a-slope-but-no-asymptotes%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46















    10












    $begingroup$

    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46













    10












    10








    10





    $begingroup$

    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid






    share|cite|improve this answer









    $endgroup$



    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Mar 20 at 17:02









    COOLSerdashCOOLSerdash

    16.6k75294




    16.6k75294







    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46












    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46







    2




    2




    $begingroup$
    I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
    $endgroup$
    – user1717828
    Mar 21 at 1:30




    $begingroup$
    I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
    $endgroup$
    – user1717828
    Mar 21 at 1:30












    $begingroup$
    this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
    $endgroup$
    – Aksakal
    Mar 22 at 10:46




    $begingroup$
    this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
    $endgroup$
    – Aksakal
    Mar 22 at 10:46













    11












    $begingroup$

    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29
















    11












    $begingroup$

    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29














    11












    11








    11





    $begingroup$

    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?






    share|cite|improve this answer











    $endgroup$



    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Mar 20 at 18:19

























    answered Mar 20 at 16:15









    jldjld

    12.3k23353




    12.3k23353







    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29













    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29








    2




    2




    $begingroup$
    The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
    $endgroup$
    – Sycorax
    Mar 20 at 18:52





    $begingroup$
    The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
    $endgroup$
    – Sycorax
    Mar 20 at 18:52













    $begingroup$
    My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
    $endgroup$
    – Ingolifs
    Mar 20 at 23:41




    $begingroup$
    My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
    $endgroup$
    – Ingolifs
    Mar 20 at 23:41












    $begingroup$
    how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
    $endgroup$
    – Aksakal
    Mar 22 at 10:48




    $begingroup$
    how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
    $endgroup$
    – Aksakal
    Mar 22 at 10:48












    $begingroup$
    @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
    $endgroup$
    – jld
    Mar 22 at 17:04





    $begingroup$
    @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
    $endgroup$
    – jld
    Mar 22 at 17:04













    $begingroup$
    @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
    $endgroup$
    – jld
    Mar 22 at 17:29





    $begingroup$
    @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
    $endgroup$
    – jld
    Mar 22 at 17:29












    6












    $begingroup$

    I will go ahead and turn the comment into an answer. I suggest
    $$
    f(x) = operatornamesign(x)logleft(1 + ,
    $$

    which has slope tending towards zero, but is unbounded.



    edit by popular demand, a plot, for $|x|le 30$:
    enter image description here






    share|cite|improve this answer











    $endgroup$

















      6












      $begingroup$

      I will go ahead and turn the comment into an answer. I suggest
      $$
      f(x) = operatornamesign(x)logleft(1 + ,
      $$

      which has slope tending towards zero, but is unbounded.



      edit by popular demand, a plot, for $|x|le 30$:
      enter image description here






      share|cite|improve this answer











      $endgroup$















        6












        6








        6





        $begingroup$

        I will go ahead and turn the comment into an answer. I suggest
        $$
        f(x) = operatornamesign(x)logleft(1 + ,
        $$

        which has slope tending towards zero, but is unbounded.



        edit by popular demand, a plot, for $|x|le 30$:
        enter image description here






        share|cite|improve this answer











        $endgroup$



        I will go ahead and turn the comment into an answer. I suggest
        $$
        f(x) = operatornamesign(x)logleft(1 + ,
        $$

        which has slope tending towards zero, but is unbounded.



        edit by popular demand, a plot, for $|x|le 30$:
        enter image description here







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 21 at 22:04

























        answered Mar 20 at 18:49









        steveo'americasteveo'america

        24319




        24319



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398551%2flogistic-function-with-a-slope-but-no-asymptotes%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

            He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

            Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029