Irreducibility of a simple polynomial Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraShow $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$
"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?
Is Diceware more secure than a long passphrase?
A strange hotel
What to do with someone that cheated their way through university and a PhD program?
What was Apollo 13's "Little Jolt" after MECO?
Co-worker works way more than he should
Scheduling based problem
Will I lose my paid in full property
Can you stand up from being prone using Skirmisher outside of your turn?
What is the best way to deal with NPC-NPC combat?
First instead of 1 when referencing
Can I criticise the more senior developers around me for not writing clean code?
Has a Nobel Peace laureate ever been accused of war crimes?
How to have a sharp product image?
Tikz positioning above circle exact alignment
What ability score does a Hexblade's Pact Weapon use for attack and damage when wielded by another character?
Why does Arg'[1. + I] return -0.5?
Multiple options vs single option UI
Is Bran literally the world's memory?
A faster way to compute the largest prime factor
How would I use different systems of magic when they are capable of the same effects?
I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?
How to avoid introduction cliches
How to open locks without disable device?
Irreducibility of a simple polynomial
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraShow $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$
$begingroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
$endgroup$
add a comment |
$begingroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
$endgroup$
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
Mar 26 at 21:08
add a comment |
$begingroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
$endgroup$
For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.
What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.
For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.
A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.
abstract-algebra field-theory irreducible-polynomials
abstract-algebra field-theory irreducible-polynomials
asked Mar 26 at 20:53
JonHalesJonHales
520311
520311
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
Mar 26 at 21:08
add a comment |
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
Mar 26 at 21:08
2
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
Mar 26 at 21:08
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
Mar 26 at 21:08
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
add a comment |
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
$endgroup$
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
Mar 26 at 21:27
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
Mar 26 at 21:30
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
Mar 26 at 21:40
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
Mar 26 at 21:42
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
add a comment |
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
add a comment |
$begingroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
$endgroup$
Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$
and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.
answered Mar 26 at 21:28
egregegreg
186k1486209
186k1486209
add a comment |
add a comment |
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
$endgroup$
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
Mar 26 at 21:27
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
Mar 26 at 21:30
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
Mar 26 at 21:40
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
Mar 26 at 21:42
add a comment |
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
$endgroup$
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
Mar 26 at 21:27
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
Mar 26 at 21:30
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
Mar 26 at 21:40
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
Mar 26 at 21:42
add a comment |
$begingroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
$endgroup$
Notice that we are trying to reduce that polynomial by this way:
$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$
We need:
$$2a-b^2=0$$
$$b=sqrt2a$$
But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:
$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$
Which is also known as Sophie Germain Identity.
answered Mar 26 at 21:23
EurekaEureka
1,189116
1,189116
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
Mar 26 at 21:27
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
Mar 26 at 21:30
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
Mar 26 at 21:40
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
Mar 26 at 21:42
add a comment |
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
Mar 26 at 21:27
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
Mar 26 at 21:30
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
Mar 26 at 21:40
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
Mar 26 at 21:42
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
Mar 26 at 21:27
$begingroup$
I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
$endgroup$
– Sil
Mar 26 at 21:27
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
Mar 26 at 21:30
$begingroup$
@Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
$endgroup$
– Eureka
Mar 26 at 21:30
1
1
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
Mar 26 at 21:40
$begingroup$
@Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
$endgroup$
– Ethan MacBrough
Mar 26 at 21:40
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
Mar 26 at 21:42
$begingroup$
@EthanMacBrough I understand, my point though was that things like that should be in answer itself.
$endgroup$
– Sil
Mar 26 at 21:42
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
Mar 26 at 21:08