Specific numerical eigenfunctions of Helmholtz equation in 3D for ellipsoidsNumerically solving Helmholtz equation in 3D for arbitrary shapesSolving the Helmholtz equation in polar coordinatesNumerically solving Helmholtz equation in 2D for arbitrary shapesNumerically solving Helmholtz equation in 3D for arbitrary shapesFinite Element Mass and Stiffness MatricesNDEigensystem producing imaginary eigenfrequencies for the vibrations of a cantileverNumerically Solving Helmholtz over the Rectangle - Why does this code only give eigenfunctions of the form $u_m1$failure of code with Helmholtz equation with point sourcesolving PDE equation like Helmholtz equation in 2DComparing analytical solution with numerical solution of Helmholtz equation in a unit squareNDSolve post-processing: Calculate the flow over a FEM-boundary

How do I reattach a shelf to the wall when it ripped out of the wall?

Phrase for the opposite of "foolproof"

Exchange,swap or switch

How does a program know if stdout is connected to a terminal or a pipe?

How come there are so many candidates for the 2020 Democratic party presidential nomination?

How to creep the reader out with what seems like a normal person?

What language was spoken in East Asia before Proto-Turkic?

TIKZ - changing one block into parallel multiple blocks

how to find the equation of a circle given points of the circle

Apply MapThread to all but one variable

A ​Note ​on ​N!

In order to check if a field is required or not, is the result of isNillable method sufficient?

How did Captain America manage to do this?

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

Mjolnir's timeline from Thor's perspective

What was the first Intel x86 processor with "Base + Index * Scale + Displacement" addressing mode?

Is there really no use for MD5 anymore?

Why must Chinese maps be obfuscated?

web3.py web3.isConnected() returns false always

How much cash can I safely carry into the USA and avoid civil forfeiture?

Is there a way to get a compiler for the original B programming language?

What happened to Captain America in Endgame?

Why does processed meat contain preservatives, while canned fish needs not?

Binary Numbers Magic Trick



Specific numerical eigenfunctions of Helmholtz equation in 3D for ellipsoids


Numerically solving Helmholtz equation in 3D for arbitrary shapesSolving the Helmholtz equation in polar coordinatesNumerically solving Helmholtz equation in 2D for arbitrary shapesNumerically solving Helmholtz equation in 3D for arbitrary shapesFinite Element Mass and Stiffness MatricesNDEigensystem producing imaginary eigenfrequencies for the vibrations of a cantileverNumerically Solving Helmholtz over the Rectangle - Why does this code only give eigenfunctions of the form $u_m1$failure of code with Helmholtz equation with point sourcesolving PDE equation like Helmholtz equation in 2DComparing analytical solution with numerical solution of Helmholtz equation in a unit squareNDSolve post-processing: Calculate the flow over a FEM-boundary













6












$begingroup$


I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



Here is my code for the first 4 eigenmodes:



Needs["NDSolve`FEM`"];

helmholzSolve3D[g_, numEigenToCompute_Integer,
opts : OptionsPattern[]] :=
Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
numEigen, res, eigenValues, eigenVectors,
evIF,

(*Discretize the region*)

If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
boundaryMesh = ToBoundaryMesh[mesh];

(*Set up the PDE and boundary condition*)

pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
u[t, x, y, z] == 0;
dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
(*Pre-process the equations to obtain the FiniteElementData in
StateData*)nr = ToNumericalRegion[mesh];
state =
NDSolve`ProcessEquations[pde, dirichletCondition,
u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
femdata = state["FiniteElementData"];
initBCs = femdata["BoundaryConditionData"];
methodData = femdata["FEMMethodData"];
initCoeffs = femdata["PDECoefficientData"];

(*Set up the solution*)vd = methodData["VariableData"];

sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

(*Discretize the PDE and boundary conditions*)

discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

(*Extract the relevant matrices and deploy the boundary conditions*)

load = discretePDE["LoadVector"];
stiffness = discretePDE["StiffnessMatrix"];
damping = discretePDE["DampingMatrix"];
DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

(*Set the number of eigenvalues ignoring the Dirichlet positions*)

pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
nDiri = Length[pos];
numEigen = numEigenToCompute + nDiri;

(*Solve the eigensystem*)

res = Eigensystem[stiffness, damping, -numEigen];
res = Reverse /@ res;
eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

(*Return the relevant information*)

eigenValues, evIF, mesh]

ev, if, mesh =
helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
MaxCellMeasure -> 0.025]

Table[
DensityPlot[
if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> ev[i] ,
ColorFunction -> Hue,
PlotLegends -> Automatic
],
i, 1, 4
]


Any suggestions?










share|improve this question











$endgroup$
















    6












    $begingroup$


    I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



    Here is my code for the first 4 eigenmodes:



    Needs["NDSolve`FEM`"];

    helmholzSolve3D[g_, numEigenToCompute_Integer,
    opts : OptionsPattern[]] :=
    Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
    nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
    discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
    numEigen, res, eigenValues, eigenVectors,
    evIF,

    (*Discretize the region*)

    If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
    mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
    mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
    boundaryMesh = ToBoundaryMesh[mesh];

    (*Set up the PDE and boundary condition*)

    pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
    u[t, x, y, z] == 0;
    dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
    (*Pre-process the equations to obtain the FiniteElementData in
    StateData*)nr = ToNumericalRegion[mesh];
    state =
    NDSolve`ProcessEquations[pde, dirichletCondition,
    u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
    femdata = state["FiniteElementData"];
    initBCs = femdata["BoundaryConditionData"];
    methodData = femdata["FEMMethodData"];
    initCoeffs = femdata["PDECoefficientData"];

    (*Set up the solution*)vd = methodData["VariableData"];

    sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

    (*Discretize the PDE and boundary conditions*)

    discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
    discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

    (*Extract the relevant matrices and deploy the boundary conditions*)

    load = discretePDE["LoadVector"];
    stiffness = discretePDE["StiffnessMatrix"];
    damping = discretePDE["DampingMatrix"];
    DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

    (*Set the number of eigenvalues ignoring the Dirichlet positions*)

    pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
    nDiri = Length[pos];
    numEigen = numEigenToCompute + nDiri;

    (*Solve the eigensystem*)

    res = Eigensystem[stiffness, damping, -numEigen];
    res = Reverse /@ res;
    eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
    eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
    evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

    (*Return the relevant information*)

    eigenValues, evIF, mesh]

    ev, if, mesh =
    helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
    MaxCellMeasure -> 0.025]

    Table[
    DensityPlot[
    if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
    RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
    PlotLabel -> ev[i] ,
    ColorFunction -> Hue,
    PlotLegends -> Automatic
    ],
    i, 1, 4
    ]


    Any suggestions?










    share|improve this question











    $endgroup$














      6












      6








      6





      $begingroup$


      I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



      Here is my code for the first 4 eigenmodes:



      Needs["NDSolve`FEM`"];

      helmholzSolve3D[g_, numEigenToCompute_Integer,
      opts : OptionsPattern[]] :=
      Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
      nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
      discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
      numEigen, res, eigenValues, eigenVectors,
      evIF,

      (*Discretize the region*)

      If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
      mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
      mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
      boundaryMesh = ToBoundaryMesh[mesh];

      (*Set up the PDE and boundary condition*)

      pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
      u[t, x, y, z] == 0;
      dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
      (*Pre-process the equations to obtain the FiniteElementData in
      StateData*)nr = ToNumericalRegion[mesh];
      state =
      NDSolve`ProcessEquations[pde, dirichletCondition,
      u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
      femdata = state["FiniteElementData"];
      initBCs = femdata["BoundaryConditionData"];
      methodData = femdata["FEMMethodData"];
      initCoeffs = femdata["PDECoefficientData"];

      (*Set up the solution*)vd = methodData["VariableData"];

      sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

      (*Discretize the PDE and boundary conditions*)

      discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
      discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

      (*Extract the relevant matrices and deploy the boundary conditions*)

      load = discretePDE["LoadVector"];
      stiffness = discretePDE["StiffnessMatrix"];
      damping = discretePDE["DampingMatrix"];
      DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

      (*Set the number of eigenvalues ignoring the Dirichlet positions*)

      pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
      nDiri = Length[pos];
      numEigen = numEigenToCompute + nDiri;

      (*Solve the eigensystem*)

      res = Eigensystem[stiffness, damping, -numEigen];
      res = Reverse /@ res;
      eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
      eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
      evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

      (*Return the relevant information*)

      eigenValues, evIF, mesh]

      ev, if, mesh =
      helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
      MaxCellMeasure -> 0.025]

      Table[
      DensityPlot[
      if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
      RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
      PlotLabel -> ev[i] ,
      ColorFunction -> Hue,
      PlotLegends -> Automatic
      ],
      i, 1, 4
      ]


      Any suggestions?










      share|improve this question











      $endgroup$




      I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



      Here is my code for the first 4 eigenmodes:



      Needs["NDSolve`FEM`"];

      helmholzSolve3D[g_, numEigenToCompute_Integer,
      opts : OptionsPattern[]] :=
      Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
      nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
      discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
      numEigen, res, eigenValues, eigenVectors,
      evIF,

      (*Discretize the region*)

      If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
      mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
      mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
      boundaryMesh = ToBoundaryMesh[mesh];

      (*Set up the PDE and boundary condition*)

      pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
      u[t, x, y, z] == 0;
      dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
      (*Pre-process the equations to obtain the FiniteElementData in
      StateData*)nr = ToNumericalRegion[mesh];
      state =
      NDSolve`ProcessEquations[pde, dirichletCondition,
      u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
      femdata = state["FiniteElementData"];
      initBCs = femdata["BoundaryConditionData"];
      methodData = femdata["FEMMethodData"];
      initCoeffs = femdata["PDECoefficientData"];

      (*Set up the solution*)vd = methodData["VariableData"];

      sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

      (*Discretize the PDE and boundary conditions*)

      discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
      discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

      (*Extract the relevant matrices and deploy the boundary conditions*)

      load = discretePDE["LoadVector"];
      stiffness = discretePDE["StiffnessMatrix"];
      damping = discretePDE["DampingMatrix"];
      DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

      (*Set the number of eigenvalues ignoring the Dirichlet positions*)

      pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
      nDiri = Length[pos];
      numEigen = numEigenToCompute + nDiri;

      (*Solve the eigensystem*)

      res = Eigensystem[stiffness, damping, -numEigen];
      res = Reverse /@ res;
      eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
      eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
      evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

      (*Return the relevant information*)

      eigenValues, evIF, mesh]

      ev, if, mesh =
      helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
      MaxCellMeasure -> 0.025]

      Table[
      DensityPlot[
      if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
      RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
      PlotLabel -> ev[i] ,
      ColorFunction -> Hue,
      PlotLegends -> Automatic
      ],
      i, 1, 4
      ]


      Any suggestions?







      differential-equations numerics finite-element-method






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 29 at 11:18









      user64494

      3,65311122




      3,65311122










      asked Mar 26 at 22:24









      George GiannoulisGeorge Giannoulis

      624




      624




















          2 Answers
          2






          active

          oldest

          votes


















          9












          $begingroup$

          You could use something like this:



          vals, funs = 
          NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
          DirichletCondition[u[x, y, z] == 0, True], u,
          Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
          Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

          427.961, 428.783, 430.026, 430.156,...


          And here are the density plots:



          Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
          RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
          PlotLabel -> vals[[i]], ColorFunction -> Hue,
          PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


          enter image description here



          Slice density plots:



          Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
          Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
          PlotRange -> All, PlotLabel -> vals[[i]],
          PlotTheme -> "Minimal"], i, Length[vals]]


          enter image description here



          And density plots:



          Table[DensityPlot3D[funs[[i]][x, y, z], 
          Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
          PlotRange -> All, PlotLabel -> vals[[i]],
          PlotTheme -> "Minimal"], i, Length[vals]]


          enter image description here






          share|improve this answer











          $endgroup$












          • $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – George Giannoulis
            Mar 28 at 19:26










          • $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36










          • $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:16










          • $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23










          • $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:58


















          6












          $begingroup$

          You may try Eigensystem with



          Method -> "FEAST", "Interval" -> a, b


          to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






          share|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            9












            $begingroup$

            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here






            share|improve this answer











            $endgroup$












            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58















            9












            $begingroup$

            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here






            share|improve this answer











            $endgroup$












            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58













            9












            9








            9





            $begingroup$

            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here






            share|improve this answer











            $endgroup$



            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Mar 29 at 12:55

























            answered Mar 27 at 6:31









            user21user21

            21.3k560100




            21.3k560100











            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58
















            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58















            $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – George Giannoulis
            Mar 28 at 19:26




            $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – George Giannoulis
            Mar 28 at 19:26












            $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36




            $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36












            $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:16




            $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:16












            $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23




            $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23












            $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:58




            $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:58











            6












            $begingroup$

            You may try Eigensystem with



            Method -> "FEAST", "Interval" -> a, b


            to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






            share|improve this answer











            $endgroup$

















              6












              $begingroup$

              You may try Eigensystem with



              Method -> "FEAST", "Interval" -> a, b


              to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






              share|improve this answer











              $endgroup$















                6












                6








                6





                $begingroup$

                You may try Eigensystem with



                Method -> "FEAST", "Interval" -> a, b


                to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






                share|improve this answer











                $endgroup$



                You may try Eigensystem with



                Method -> "FEAST", "Interval" -> a, b


                to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Mar 27 at 7:23

























                answered Mar 26 at 22:32









                Henrik SchumacherHenrik Schumacher

                61.3k585171




                61.3k585171



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                    He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                    Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029