Irreducibility of a simple polynomial












3












$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbb{Q}$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbb{Q}(sqrt{ai})$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    13 hours ago


















3












$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbb{Q}$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbb{Q}(sqrt{ai})$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    13 hours ago
















3












3








3


1



$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbb{Q}$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbb{Q}(sqrt{ai})$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$




For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbb{Q}$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbb{Q}(sqrt{ai})$ is a degree $4$ extension, but this didn't seem to help.







abstract-algebra field-theory irreducible-polynomials






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 13 hours ago









JonHalesJonHales

520311




520311








  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    13 hours ago
















  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    13 hours ago










2




2




$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
13 hours ago






$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
13 hours ago












2 Answers
2






active

oldest

votes


















3












$begingroup$

Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt{2a}x)^2=
(x^2-sqrt{2a}x+a)(x^2+sqrt{2a}x+a)
$$

and it's obvious that the two polynomials are irreducible over $mathbb{R}$. By uniqueness of factorization, this is a factorization in $mathbb{Q}[x]$ if and only if $2a$ is a square in $mathbb{Q}$.






share|cite|improve this answer









$endgroup$





















    4












    $begingroup$

    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt{2a}$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.






    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$













    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      13 hours ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      13 hours ago








    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      13 hours ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      13 hours ago











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
    $$
    x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt{2a}x)^2=
    (x^2-sqrt{2a}x+a)(x^2+sqrt{2a}x+a)
    $$

    and it's obvious that the two polynomials are irreducible over $mathbb{R}$. By uniqueness of factorization, this is a factorization in $mathbb{Q}[x]$ if and only if $2a$ is a square in $mathbb{Q}$.






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
      $$
      x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt{2a}x)^2=
      (x^2-sqrt{2a}x+a)(x^2+sqrt{2a}x+a)
      $$

      and it's obvious that the two polynomials are irreducible over $mathbb{R}$. By uniqueness of factorization, this is a factorization in $mathbb{Q}[x]$ if and only if $2a$ is a square in $mathbb{Q}$.






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
        $$
        x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt{2a}x)^2=
        (x^2-sqrt{2a}x+a)(x^2+sqrt{2a}x+a)
        $$

        and it's obvious that the two polynomials are irreducible over $mathbb{R}$. By uniqueness of factorization, this is a factorization in $mathbb{Q}[x]$ if and only if $2a$ is a square in $mathbb{Q}$.






        share|cite|improve this answer









        $endgroup$



        Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
        $$
        x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt{2a}x)^2=
        (x^2-sqrt{2a}x+a)(x^2+sqrt{2a}x+a)
        $$

        and it's obvious that the two polynomials are irreducible over $mathbb{R}$. By uniqueness of factorization, this is a factorization in $mathbb{Q}[x]$ if and only if $2a$ is a square in $mathbb{Q}$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 13 hours ago









        egregegreg

        185k1486206




        185k1486206























            4












            $begingroup$

            Notice that we are trying to reduce that polynomial by this way:



            $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



            We need:



            $$2a-b^2=0$$
            $$b=sqrt{2a}$$



            But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



            $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



            Which is also known as Sophie Germain Identity.






            share|cite|improve this answer








            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$













            • $begingroup$
              I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
              $endgroup$
              – Sil
              13 hours ago










            • $begingroup$
              @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
              $endgroup$
              – Eureka
              13 hours ago








            • 1




              $begingroup$
              @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
              $endgroup$
              – Ethan MacBrough
              13 hours ago










            • $begingroup$
              @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
              $endgroup$
              – Sil
              13 hours ago
















            4












            $begingroup$

            Notice that we are trying to reduce that polynomial by this way:



            $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



            We need:



            $$2a-b^2=0$$
            $$b=sqrt{2a}$$



            But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



            $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



            Which is also known as Sophie Germain Identity.






            share|cite|improve this answer








            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$













            • $begingroup$
              I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
              $endgroup$
              – Sil
              13 hours ago










            • $begingroup$
              @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
              $endgroup$
              – Eureka
              13 hours ago








            • 1




              $begingroup$
              @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
              $endgroup$
              – Ethan MacBrough
              13 hours ago










            • $begingroup$
              @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
              $endgroup$
              – Sil
              13 hours ago














            4












            4








            4





            $begingroup$

            Notice that we are trying to reduce that polynomial by this way:



            $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



            We need:



            $$2a-b^2=0$$
            $$b=sqrt{2a}$$



            But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



            $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



            Which is also known as Sophie Germain Identity.






            share|cite|improve this answer








            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$



            Notice that we are trying to reduce that polynomial by this way:



            $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



            We need:



            $$2a-b^2=0$$
            $$b=sqrt{2a}$$



            But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



            $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



            Which is also known as Sophie Germain Identity.







            share|cite|improve this answer








            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|cite|improve this answer



            share|cite|improve this answer






            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered 13 hours ago









            EurekaEureka

            25611




            25611




            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.












            • $begingroup$
              I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
              $endgroup$
              – Sil
              13 hours ago










            • $begingroup$
              @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
              $endgroup$
              – Eureka
              13 hours ago








            • 1




              $begingroup$
              @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
              $endgroup$
              – Ethan MacBrough
              13 hours ago










            • $begingroup$
              @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
              $endgroup$
              – Sil
              13 hours ago


















            • $begingroup$
              I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
              $endgroup$
              – Sil
              13 hours ago










            • $begingroup$
              @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
              $endgroup$
              – Eureka
              13 hours ago








            • 1




              $begingroup$
              @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
              $endgroup$
              – Ethan MacBrough
              13 hours ago










            • $begingroup$
              @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
              $endgroup$
              – Sil
              13 hours ago
















            $begingroup$
            I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
            $endgroup$
            – Sil
            13 hours ago




            $begingroup$
            I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
            $endgroup$
            – Sil
            13 hours ago












            $begingroup$
            @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
            $endgroup$
            – Eureka
            13 hours ago






            $begingroup$
            @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
            $endgroup$
            – Eureka
            13 hours ago






            1




            1




            $begingroup$
            @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
            $endgroup$
            – Ethan MacBrough
            13 hours ago




            $begingroup$
            @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
            $endgroup$
            – Ethan MacBrough
            13 hours ago












            $begingroup$
            @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
            $endgroup$
            – Sil
            13 hours ago




            $begingroup$
            @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
            $endgroup$
            – Sil
            13 hours ago


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

            He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

            Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029