Reference request: Grassmannian and Plucker coordinates in type B, C, D












11












$begingroup$


Grassmannian $Gr(k,n)$ is the set of $k$-dimensional subspace of an $n$-dimensional vector space. What are the Grassmannian in types B, C, D? What are the analog of Plucker coordinates and Plucker relations in these cases? Are there some references about this? Thank you very much.










share|cite|improve this question









$endgroup$

















    11












    $begingroup$


    Grassmannian $Gr(k,n)$ is the set of $k$-dimensional subspace of an $n$-dimensional vector space. What are the Grassmannian in types B, C, D? What are the analog of Plucker coordinates and Plucker relations in these cases? Are there some references about this? Thank you very much.










    share|cite|improve this question









    $endgroup$















      11












      11








      11


      5



      $begingroup$


      Grassmannian $Gr(k,n)$ is the set of $k$-dimensional subspace of an $n$-dimensional vector space. What are the Grassmannian in types B, C, D? What are the analog of Plucker coordinates and Plucker relations in these cases? Are there some references about this? Thank you very much.










      share|cite|improve this question









      $endgroup$




      Grassmannian $Gr(k,n)$ is the set of $k$-dimensional subspace of an $n$-dimensional vector space. What are the Grassmannian in types B, C, D? What are the analog of Plucker coordinates and Plucker relations in these cases? Are there some references about this? Thank you very much.







      ag.algebraic-geometry co.combinatorics rt.representation-theory lie-groups






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 30 at 13:10









      Jianrong LiJianrong Li

      2,53721319




      2,53721319






















          3 Answers
          3






          active

          oldest

          votes


















          12












          $begingroup$

          In type $B$ and $D$ these are orthogonal isotropic Grassmannians $$OGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate quadratic form.



          In type $C$ these are symplectic isotropic Grassmannians $$SGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate symplectic form.






          share|cite|improve this answer









          $endgroup$





















            12












            $begingroup$

            What these have in common is that they are of the form $G/P$ for $P$ a maximal parabolic. As such each has a minimal projective embedding of the form $G/P hookrightarrow mathbb P(V_omega)$ where $V_omega$ is a fundamental representation (the analogue of the Plücker coordinates). The two coordinate rings, of $mathbb P(V_omega)$ and $G/P$, are $Sym(V_omega^*)$ and $oplus_n V_{nomega}^*$ respectively. The kernel of the ring map $Sym(V_omega^*) twoheadrightarrow oplus_n V_{nomega}^*$ is generated in degree $2$ by Ramanathan's theorem (whose proof you can read in the unique book by Brion + Kumar), i.e. the analogue of the Plücker relations is the complement to $V_{2omega}^*$ inside $Sym^2(V_omega^*)$. I don't know enough about that representation theory in the specific $BCD$ cases to tell you more.






            share|cite|improve this answer









            $endgroup$





















              8












              $begingroup$

              It might also be worth mentioning that the Type A Grassmannians are minuscule varieties, meaning they are $G/P$ for a maximal parabolic $P$ corresponding to a minuscule node of the Dynkin diagram. Minuscule (and also cominuscule) varieties tend to behave a bit better than arbitrary homogeneous spaces $G/P$. At least, their combinatorics can be described quite explicitly, like with the Grassmannian: see e.g. https://arxiv.org/abs/math/0608276 or https://arxiv.org/abs/1306.5419. Note that outside of Type A not so many of the nodes of a Dynkin diagram are minuscule.






              share|cite|improve this answer









              $endgroup$














                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "504"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326749%2freference-request-grassmannian-and-plucker-coordinates-in-type-b-c-d%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                12












                $begingroup$

                In type $B$ and $D$ these are orthogonal isotropic Grassmannians $$OGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate quadratic form.



                In type $C$ these are symplectic isotropic Grassmannians $$SGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate symplectic form.






                share|cite|improve this answer









                $endgroup$


















                  12












                  $begingroup$

                  In type $B$ and $D$ these are orthogonal isotropic Grassmannians $$OGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate quadratic form.



                  In type $C$ these are symplectic isotropic Grassmannians $$SGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate symplectic form.






                  share|cite|improve this answer









                  $endgroup$
















                    12












                    12








                    12





                    $begingroup$

                    In type $B$ and $D$ these are orthogonal isotropic Grassmannians $$OGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate quadratic form.



                    In type $C$ these are symplectic isotropic Grassmannians $$SGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate symplectic form.






                    share|cite|improve this answer









                    $endgroup$



                    In type $B$ and $D$ these are orthogonal isotropic Grassmannians $$OGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate quadratic form.



                    In type $C$ these are symplectic isotropic Grassmannians $$SGr(k,n) subset Gr(k,n),$$ that parameterize isotropic $k$-dimensional subspaces in a vector space of dimension $n$ endowed with a non-degenerate symplectic form.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 30 at 13:34









                    SashaSasha

                    21.3k22756




                    21.3k22756























                        12












                        $begingroup$

                        What these have in common is that they are of the form $G/P$ for $P$ a maximal parabolic. As such each has a minimal projective embedding of the form $G/P hookrightarrow mathbb P(V_omega)$ where $V_omega$ is a fundamental representation (the analogue of the Plücker coordinates). The two coordinate rings, of $mathbb P(V_omega)$ and $G/P$, are $Sym(V_omega^*)$ and $oplus_n V_{nomega}^*$ respectively. The kernel of the ring map $Sym(V_omega^*) twoheadrightarrow oplus_n V_{nomega}^*$ is generated in degree $2$ by Ramanathan's theorem (whose proof you can read in the unique book by Brion + Kumar), i.e. the analogue of the Plücker relations is the complement to $V_{2omega}^*$ inside $Sym^2(V_omega^*)$. I don't know enough about that representation theory in the specific $BCD$ cases to tell you more.






                        share|cite|improve this answer









                        $endgroup$


















                          12












                          $begingroup$

                          What these have in common is that they are of the form $G/P$ for $P$ a maximal parabolic. As such each has a minimal projective embedding of the form $G/P hookrightarrow mathbb P(V_omega)$ where $V_omega$ is a fundamental representation (the analogue of the Plücker coordinates). The two coordinate rings, of $mathbb P(V_omega)$ and $G/P$, are $Sym(V_omega^*)$ and $oplus_n V_{nomega}^*$ respectively. The kernel of the ring map $Sym(V_omega^*) twoheadrightarrow oplus_n V_{nomega}^*$ is generated in degree $2$ by Ramanathan's theorem (whose proof you can read in the unique book by Brion + Kumar), i.e. the analogue of the Plücker relations is the complement to $V_{2omega}^*$ inside $Sym^2(V_omega^*)$. I don't know enough about that representation theory in the specific $BCD$ cases to tell you more.






                          share|cite|improve this answer









                          $endgroup$
















                            12












                            12








                            12





                            $begingroup$

                            What these have in common is that they are of the form $G/P$ for $P$ a maximal parabolic. As such each has a minimal projective embedding of the form $G/P hookrightarrow mathbb P(V_omega)$ where $V_omega$ is a fundamental representation (the analogue of the Plücker coordinates). The two coordinate rings, of $mathbb P(V_omega)$ and $G/P$, are $Sym(V_omega^*)$ and $oplus_n V_{nomega}^*$ respectively. The kernel of the ring map $Sym(V_omega^*) twoheadrightarrow oplus_n V_{nomega}^*$ is generated in degree $2$ by Ramanathan's theorem (whose proof you can read in the unique book by Brion + Kumar), i.e. the analogue of the Plücker relations is the complement to $V_{2omega}^*$ inside $Sym^2(V_omega^*)$. I don't know enough about that representation theory in the specific $BCD$ cases to tell you more.






                            share|cite|improve this answer









                            $endgroup$



                            What these have in common is that they are of the form $G/P$ for $P$ a maximal parabolic. As such each has a minimal projective embedding of the form $G/P hookrightarrow mathbb P(V_omega)$ where $V_omega$ is a fundamental representation (the analogue of the Plücker coordinates). The two coordinate rings, of $mathbb P(V_omega)$ and $G/P$, are $Sym(V_omega^*)$ and $oplus_n V_{nomega}^*$ respectively. The kernel of the ring map $Sym(V_omega^*) twoheadrightarrow oplus_n V_{nomega}^*$ is generated in degree $2$ by Ramanathan's theorem (whose proof you can read in the unique book by Brion + Kumar), i.e. the analogue of the Plücker relations is the complement to $V_{2omega}^*$ inside $Sym^2(V_omega^*)$. I don't know enough about that representation theory in the specific $BCD$ cases to tell you more.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 30 at 14:52









                            Allen KnutsonAllen Knutson

                            21.4k445130




                            21.4k445130























                                8












                                $begingroup$

                                It might also be worth mentioning that the Type A Grassmannians are minuscule varieties, meaning they are $G/P$ for a maximal parabolic $P$ corresponding to a minuscule node of the Dynkin diagram. Minuscule (and also cominuscule) varieties tend to behave a bit better than arbitrary homogeneous spaces $G/P$. At least, their combinatorics can be described quite explicitly, like with the Grassmannian: see e.g. https://arxiv.org/abs/math/0608276 or https://arxiv.org/abs/1306.5419. Note that outside of Type A not so many of the nodes of a Dynkin diagram are minuscule.






                                share|cite|improve this answer









                                $endgroup$


















                                  8












                                  $begingroup$

                                  It might also be worth mentioning that the Type A Grassmannians are minuscule varieties, meaning they are $G/P$ for a maximal parabolic $P$ corresponding to a minuscule node of the Dynkin diagram. Minuscule (and also cominuscule) varieties tend to behave a bit better than arbitrary homogeneous spaces $G/P$. At least, their combinatorics can be described quite explicitly, like with the Grassmannian: see e.g. https://arxiv.org/abs/math/0608276 or https://arxiv.org/abs/1306.5419. Note that outside of Type A not so many of the nodes of a Dynkin diagram are minuscule.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    8












                                    8








                                    8





                                    $begingroup$

                                    It might also be worth mentioning that the Type A Grassmannians are minuscule varieties, meaning they are $G/P$ for a maximal parabolic $P$ corresponding to a minuscule node of the Dynkin diagram. Minuscule (and also cominuscule) varieties tend to behave a bit better than arbitrary homogeneous spaces $G/P$. At least, their combinatorics can be described quite explicitly, like with the Grassmannian: see e.g. https://arxiv.org/abs/math/0608276 or https://arxiv.org/abs/1306.5419. Note that outside of Type A not so many of the nodes of a Dynkin diagram are minuscule.






                                    share|cite|improve this answer









                                    $endgroup$



                                    It might also be worth mentioning that the Type A Grassmannians are minuscule varieties, meaning they are $G/P$ for a maximal parabolic $P$ corresponding to a minuscule node of the Dynkin diagram. Minuscule (and also cominuscule) varieties tend to behave a bit better than arbitrary homogeneous spaces $G/P$. At least, their combinatorics can be described quite explicitly, like with the Grassmannian: see e.g. https://arxiv.org/abs/math/0608276 or https://arxiv.org/abs/1306.5419. Note that outside of Type A not so many of the nodes of a Dynkin diagram are minuscule.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 30 at 15:03









                                    Sam HopkinsSam Hopkins

                                    5,19212560




                                    5,19212560






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to MathOverflow!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326749%2freference-request-grassmannian-and-plucker-coordinates-in-type-b-c-d%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                                        He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                                        Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029