Multiply Two Integer Polynomials
$begingroup$
Your task is to take two single-variable integer polynomial expressions and multiply them into their unsimplified first-term-major left-to-right expansion (A.K.A. FOIL in the case of binomials). Do not combine like terms or reorder the result. To be more explicit about the expansion, multiply the first term in the first expression by each term in the second, in order, and continue in the first expression until all terms have been multiplied by all other terms. Expressions will be given in a simplified LaTeX variant.
Each expression will be a sequence of terms separated by +
(with exactly one space on each side) Each term will conform to the following regular expression: (PCRE notation)
-?d+x^d+
In plain English, the term is an optional leading -
followed by one or more digits followed by x
and a nonnegative integer power (with ^
)
An example of a full expression:
6x^3 + 1337x^2 + -4x^1 + 2x^0
When plugged into LaTeX, you get $6x^3 + 1337x^2 + -4x^1 + 2x^0$
The output should also conform to this format.
Since brackets do not surround exponents in this format, LaTeX will actually render multi-digit exponents incorrectly. (e.g. 4x^3 + -2x^14 + 54x^28 + -4x^5
renders as $4x^3 + -2x^14 + 54x^28 + -4x^5$) You do not need to account for this and you should not include the brackets in your output.
Example Test Cases
5x^4
3x^23
15x^27
6x^2 + 7x^1 + -2x^0
1x^2 + -2x^3
6x^4 + -12x^5 + 7x^3 + -14x^4 + -2x^2 + 4x^3
3x^1 + 5x^2 + 2x^4 + 3x^0
3x^0
9x^1 + 15x^2 + 6x^4 + 9x^0
4x^3 + -2x^14 + 54x^28 + -4x^5
-0x^7
0x^10 + 0x^21 + 0x^35 + 0x^12
4x^3 + -2x^4 + 0x^255 + -4x^5
-3x^4 + 2x^2
-12x^7 + 8x^5 + 6x^8 + -4x^6 + 0x^259 + 0x^257 + 12x^9 + -8x^7
Rules and Assumptions
- You may assume that all inputs conform to this exact format. Behavior for any other format is undefined for the purposes of this challenge.
- It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format.
- The order of the polynomials matters due to the expected order of the product expansion.
- You must support input coefficients between $-128$ and $127$ and input exponents up to $255$.
- Output coefficents between $-16,256$ and $16,384$ and exponents up to $510$ must therefore be supported.
- You may assume each input polynomial contains no more than 16 terms
- Therefore you must (at minimum) support up to 256 terms in the output
- Terms with zero coefficients should be left as is, with exponents being properly combined
- Negative zero is allowed in the input, but is indistinguishable from positive zero semantically. Always output positive zero. Do not omit zero terms.
Happy Golfing! Good luck!
code-golf math parsing
$endgroup$
add a comment |
$begingroup$
Your task is to take two single-variable integer polynomial expressions and multiply them into their unsimplified first-term-major left-to-right expansion (A.K.A. FOIL in the case of binomials). Do not combine like terms or reorder the result. To be more explicit about the expansion, multiply the first term in the first expression by each term in the second, in order, and continue in the first expression until all terms have been multiplied by all other terms. Expressions will be given in a simplified LaTeX variant.
Each expression will be a sequence of terms separated by +
(with exactly one space on each side) Each term will conform to the following regular expression: (PCRE notation)
-?d+x^d+
In plain English, the term is an optional leading -
followed by one or more digits followed by x
and a nonnegative integer power (with ^
)
An example of a full expression:
6x^3 + 1337x^2 + -4x^1 + 2x^0
When plugged into LaTeX, you get $6x^3 + 1337x^2 + -4x^1 + 2x^0$
The output should also conform to this format.
Since brackets do not surround exponents in this format, LaTeX will actually render multi-digit exponents incorrectly. (e.g. 4x^3 + -2x^14 + 54x^28 + -4x^5
renders as $4x^3 + -2x^14 + 54x^28 + -4x^5$) You do not need to account for this and you should not include the brackets in your output.
Example Test Cases
5x^4
3x^23
15x^27
6x^2 + 7x^1 + -2x^0
1x^2 + -2x^3
6x^4 + -12x^5 + 7x^3 + -14x^4 + -2x^2 + 4x^3
3x^1 + 5x^2 + 2x^4 + 3x^0
3x^0
9x^1 + 15x^2 + 6x^4 + 9x^0
4x^3 + -2x^14 + 54x^28 + -4x^5
-0x^7
0x^10 + 0x^21 + 0x^35 + 0x^12
4x^3 + -2x^4 + 0x^255 + -4x^5
-3x^4 + 2x^2
-12x^7 + 8x^5 + 6x^8 + -4x^6 + 0x^259 + 0x^257 + 12x^9 + -8x^7
Rules and Assumptions
- You may assume that all inputs conform to this exact format. Behavior for any other format is undefined for the purposes of this challenge.
- It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format.
- The order of the polynomials matters due to the expected order of the product expansion.
- You must support input coefficients between $-128$ and $127$ and input exponents up to $255$.
- Output coefficents between $-16,256$ and $16,384$ and exponents up to $510$ must therefore be supported.
- You may assume each input polynomial contains no more than 16 terms
- Therefore you must (at minimum) support up to 256 terms in the output
- Terms with zero coefficients should be left as is, with exponents being properly combined
- Negative zero is allowed in the input, but is indistinguishable from positive zero semantically. Always output positive zero. Do not omit zero terms.
Happy Golfing! Good luck!
code-golf math parsing
$endgroup$
$begingroup$
related
$endgroup$
– H.PWiz
13 hours ago
1
$begingroup$
@LuisfelipeDejesusMunoz I imagine not. Parsing is an integral part of the challenge and the OP says -- "It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format." (emphasis added)
$endgroup$
– Giuseppe
12 hours ago
$begingroup$
Your regex is wrong:^
should be^
.
$endgroup$
– Erik the Outgolfer
12 hours ago
add a comment |
$begingroup$
Your task is to take two single-variable integer polynomial expressions and multiply them into their unsimplified first-term-major left-to-right expansion (A.K.A. FOIL in the case of binomials). Do not combine like terms or reorder the result. To be more explicit about the expansion, multiply the first term in the first expression by each term in the second, in order, and continue in the first expression until all terms have been multiplied by all other terms. Expressions will be given in a simplified LaTeX variant.
Each expression will be a sequence of terms separated by +
(with exactly one space on each side) Each term will conform to the following regular expression: (PCRE notation)
-?d+x^d+
In plain English, the term is an optional leading -
followed by one or more digits followed by x
and a nonnegative integer power (with ^
)
An example of a full expression:
6x^3 + 1337x^2 + -4x^1 + 2x^0
When plugged into LaTeX, you get $6x^3 + 1337x^2 + -4x^1 + 2x^0$
The output should also conform to this format.
Since brackets do not surround exponents in this format, LaTeX will actually render multi-digit exponents incorrectly. (e.g. 4x^3 + -2x^14 + 54x^28 + -4x^5
renders as $4x^3 + -2x^14 + 54x^28 + -4x^5$) You do not need to account for this and you should not include the brackets in your output.
Example Test Cases
5x^4
3x^23
15x^27
6x^2 + 7x^1 + -2x^0
1x^2 + -2x^3
6x^4 + -12x^5 + 7x^3 + -14x^4 + -2x^2 + 4x^3
3x^1 + 5x^2 + 2x^4 + 3x^0
3x^0
9x^1 + 15x^2 + 6x^4 + 9x^0
4x^3 + -2x^14 + 54x^28 + -4x^5
-0x^7
0x^10 + 0x^21 + 0x^35 + 0x^12
4x^3 + -2x^4 + 0x^255 + -4x^5
-3x^4 + 2x^2
-12x^7 + 8x^5 + 6x^8 + -4x^6 + 0x^259 + 0x^257 + 12x^9 + -8x^7
Rules and Assumptions
- You may assume that all inputs conform to this exact format. Behavior for any other format is undefined for the purposes of this challenge.
- It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format.
- The order of the polynomials matters due to the expected order of the product expansion.
- You must support input coefficients between $-128$ and $127$ and input exponents up to $255$.
- Output coefficents between $-16,256$ and $16,384$ and exponents up to $510$ must therefore be supported.
- You may assume each input polynomial contains no more than 16 terms
- Therefore you must (at minimum) support up to 256 terms in the output
- Terms with zero coefficients should be left as is, with exponents being properly combined
- Negative zero is allowed in the input, but is indistinguishable from positive zero semantically. Always output positive zero. Do not omit zero terms.
Happy Golfing! Good luck!
code-golf math parsing
$endgroup$
Your task is to take two single-variable integer polynomial expressions and multiply them into their unsimplified first-term-major left-to-right expansion (A.K.A. FOIL in the case of binomials). Do not combine like terms or reorder the result. To be more explicit about the expansion, multiply the first term in the first expression by each term in the second, in order, and continue in the first expression until all terms have been multiplied by all other terms. Expressions will be given in a simplified LaTeX variant.
Each expression will be a sequence of terms separated by +
(with exactly one space on each side) Each term will conform to the following regular expression: (PCRE notation)
-?d+x^d+
In plain English, the term is an optional leading -
followed by one or more digits followed by x
and a nonnegative integer power (with ^
)
An example of a full expression:
6x^3 + 1337x^2 + -4x^1 + 2x^0
When plugged into LaTeX, you get $6x^3 + 1337x^2 + -4x^1 + 2x^0$
The output should also conform to this format.
Since brackets do not surround exponents in this format, LaTeX will actually render multi-digit exponents incorrectly. (e.g. 4x^3 + -2x^14 + 54x^28 + -4x^5
renders as $4x^3 + -2x^14 + 54x^28 + -4x^5$) You do not need to account for this and you should not include the brackets in your output.
Example Test Cases
5x^4
3x^23
15x^27
6x^2 + 7x^1 + -2x^0
1x^2 + -2x^3
6x^4 + -12x^5 + 7x^3 + -14x^4 + -2x^2 + 4x^3
3x^1 + 5x^2 + 2x^4 + 3x^0
3x^0
9x^1 + 15x^2 + 6x^4 + 9x^0
4x^3 + -2x^14 + 54x^28 + -4x^5
-0x^7
0x^10 + 0x^21 + 0x^35 + 0x^12
4x^3 + -2x^4 + 0x^255 + -4x^5
-3x^4 + 2x^2
-12x^7 + 8x^5 + 6x^8 + -4x^6 + 0x^259 + 0x^257 + 12x^9 + -8x^7
Rules and Assumptions
- You may assume that all inputs conform to this exact format. Behavior for any other format is undefined for the purposes of this challenge.
- It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format.
- The order of the polynomials matters due to the expected order of the product expansion.
- You must support input coefficients between $-128$ and $127$ and input exponents up to $255$.
- Output coefficents between $-16,256$ and $16,384$ and exponents up to $510$ must therefore be supported.
- You may assume each input polynomial contains no more than 16 terms
- Therefore you must (at minimum) support up to 256 terms in the output
- Terms with zero coefficients should be left as is, with exponents being properly combined
- Negative zero is allowed in the input, but is indistinguishable from positive zero semantically. Always output positive zero. Do not omit zero terms.
Happy Golfing! Good luck!
code-golf math parsing
code-golf math parsing
asked 13 hours ago
BeefsterBeefster
2,6351244
2,6351244
$begingroup$
related
$endgroup$
– H.PWiz
13 hours ago
1
$begingroup$
@LuisfelipeDejesusMunoz I imagine not. Parsing is an integral part of the challenge and the OP says -- "It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format." (emphasis added)
$endgroup$
– Giuseppe
12 hours ago
$begingroup$
Your regex is wrong:^
should be^
.
$endgroup$
– Erik the Outgolfer
12 hours ago
add a comment |
$begingroup$
related
$endgroup$
– H.PWiz
13 hours ago
1
$begingroup$
@LuisfelipeDejesusMunoz I imagine not. Parsing is an integral part of the challenge and the OP says -- "It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format." (emphasis added)
$endgroup$
– Giuseppe
12 hours ago
$begingroup$
Your regex is wrong:^
should be^
.
$endgroup$
– Erik the Outgolfer
12 hours ago
$begingroup$
related
$endgroup$
– H.PWiz
13 hours ago
$begingroup$
related
$endgroup$
– H.PWiz
13 hours ago
1
1
$begingroup$
@LuisfelipeDejesusMunoz I imagine not. Parsing is an integral part of the challenge and the OP says -- "It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format." (emphasis added)
$endgroup$
– Giuseppe
12 hours ago
$begingroup$
@LuisfelipeDejesusMunoz I imagine not. Parsing is an integral part of the challenge and the OP says -- "It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format." (emphasis added)
$endgroup$
– Giuseppe
12 hours ago
$begingroup$
Your regex is wrong:
^
should be ^
.$endgroup$
– Erik the Outgolfer
12 hours ago
$begingroup$
Your regex is wrong:
^
should be ^
.$endgroup$
– Erik the Outgolfer
12 hours ago
add a comment |
14 Answers
14
active
oldest
votes
$begingroup$
R, 159 153 bytes
function(P,Q,a=h(P),b=h(Q))paste0(b[1,]%o%a[1,],"x^",outer(b[2,],a[2,],"+"),collapse=" + ")
h=function(s,`/`=strsplit)sapply(el(s/" \+ ")/"x\^",strtoi)
Try it online!
I really wanted to use outer
, so there's almost surely a more efficient approach.
$endgroup$
add a comment |
$begingroup$
Pyth - 39 bytes
LmsMcdK"x^"%2cb)j" + "m++*FhdKsedCM*FyM
Try it online.
$endgroup$
add a comment |
$begingroup$
Haskell, 124 bytes
import Data.Lists
s=splitOn
z=map(map read.s"x^").s"+"
a#b=intercalate" + "[shows(u*p)"x^"++show(v+q)|[u,v]<-z a,[p,q]<-z b]
Note: TIO lacks Data.Lists
, so I import Data.Lists.Split
and Data.List
: Try it online!
$endgroup$
add a comment |
$begingroup$
Ruby, 102 bytes
->a,b{a.scan(w=/(-?d+)x.(d+)/).product(b.scan w).map{|x,y|(eval"[%s*(z=%s;%s),z+%s]"%x+=y)*"x^"}*?+}
Try it online!
$endgroup$
add a comment |
$begingroup$
JavaScript, 112 bytes
I found three alternatives with the same length. Call with currying syntax.
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
f=
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
$endgroup$
$begingroup$
split' + ' => split'+'
to save 2 bytes
$endgroup$
– Luis felipe De jesus Munoz
10 hours ago
$begingroup$
@Arnauld Seems fine without them
$endgroup$
– Embodiment of Ignorance
8 hours ago
$begingroup$
@EmbodimentofIgnorance My bad, I misread Luis' comment. I thought it was about thejoin
.
$endgroup$
– Arnauld
8 hours ago
add a comment |
$begingroup$
Jelly, 28 bytes
ṣ”+ṣ”xV$€)p/ZPSƭ€j⁾x^Ʋ€j“ +
Try it online!
Full program. Takes the two polynomials as a list of two strings.
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 192 190 188 bytes
n=>m=>string.Join(g="+",from a in n.Split(g)from b in m.Split(g)select f(a.Split(p="x^")[0])*f(b.Split(p)[0])+p+(f(a.Split(p)[1])+f(b.Split(p)[1])));Func<string,int>f=int.Parse;string p,g;
Query syntax seems to be a byte shorter than method syntax.
At least I beat SNOBOL.
Try it online!
$endgroup$
add a comment |
$begingroup$
SNOBOL4 (CSNOBOL4), 192 176 bytes
P =INPUT
Q =INPUT
D =SPAN(-1234567890)
P P D . K ARB D . W REM . P :F(O)
B =Q
B B D . C ARB D . E REM . B :F(P)
O =O ' + ' K * C 'x^' W + E :(B)
O O ' + ' REM . OUTPUT
END
Try it online!
P =INPUT ;* read P
Q =INPUT ;* read Q
D =SPAN(-1234567890) ;* save PATTERN for Digits (or a - sign); equivalent to [0-9\-]+
P P D . K ARB D . W REM . P :F(O) ;* save the Koefficient and the poWer, saving the REMainder as P, or if no match, goto O
B =Q ;* set B = Q
B B D . C ARB D . E REM . B :F(P) ;* save the Coefficient and the powEr, saving the REMainder as B, or if no match, goto P
O =O ' + ' K * C 'x^' W + E :(B) ;* accumulate the output
O O ' + ' REM . OUTPUT ;* match ' + ' and OUTPUT the REMainder
END
$endgroup$
add a comment |
$begingroup$
Python 2, 130 bytes
lambda a,b:' + '.join([`v*V`+'x^'+`k+K`for V,K in g(a)for v,k in g(b)])
g=lambda s:[map(int,t.split('x^'))for t in s.split(' + ')]
Try it online!
$endgroup$
add a comment |
$begingroup$
JavaScript (Babel Node), 118 bytes
Takes input as (a)(b)
.
a=>b=>(g=s=>[...s.matchAll(/(-?d+)x.(d+)/g)])(a).flatMap(([_,x,p])=>g(b).map(([_,X,P])=>x*X+'x^'+-(-p-P))).join` + `
Try it online!
$endgroup$
add a comment |
$begingroup$
Haskell, 133 bytes
f""=
f t|[(a,_:_:u)]<-reads t,[(i,v)]<-reads u=(a,i):f(drop 3v)
p!q=drop 3$do(a,i)<-f p;(b,j)<-f q;" + "++shows(a*b)"x^"++show(i+j)
Try it online!
f
parses a polynomial from a string, !
multiplies two of them and formats the result.
$endgroup$
add a comment |
$begingroup$
Python 2, 193 bytes
import re
f=re.finditer
lambda a,b:' + '.join(' + '.join(`int(m.group(1))*int(n.group(1))`+'x^'+`int(m.group(2))+int(n.group(2))`for n in f('(-?d+)x^(d+)',b))for m in f('(-?d+)x^(d+)',a))
Try it online!
Side note: First time doing a code golf challenge, so sorry if the attempt sucks haha
New contributor
$endgroup$
2
$begingroup$
Welcome to PPCG! I'm not much of a python programmer, but if your submission is longer than a SNOBOL one, there's probably room for improvement, heheh. Perhaps you can find help at Tips for Golfing in Python or Tips for Golfing in <all languages>! Hope you enjoy the time you spend here :-)
$endgroup$
– Giuseppe
10 hours ago
add a comment |
$begingroup$
Retina, 110 bytes
SS+(?=.*n(.+))
$1#$&
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
--|-(0)
$1
Try it online! Explanation:
SS+(?=.*n(.+))
$1#$&
Prefix each term in the first input with a #
, a copy of the second input, and a space. This means that all of the terms in copies of the second input are preceded by a space and none of the terms from the first input are.
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
Match all of the copies of terms in the second input and their corresponding term from the first input. Concatenate any -
signs, multiply the coefficients, and add the indices. Finally join all of the resulting substitutions with the string +
.
--|-(0)
$1
Delete any pairs of -
s and convert -0
to 0
.
$endgroup$
add a comment |
$begingroup$
Perl 6, 114 bytes
{my&g=*.match(/(-?d+)x^(d+)/,:g)».caps».Map;join " + ",map {"{[*] $_»{0}}x^{[+] $_»{1}}"},(g($^a)X g $^b)}
Try it online!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "200"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f182972%2fmultiply-two-integer-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
14 Answers
14
active
oldest
votes
14 Answers
14
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
R, 159 153 bytes
function(P,Q,a=h(P),b=h(Q))paste0(b[1,]%o%a[1,],"x^",outer(b[2,],a[2,],"+"),collapse=" + ")
h=function(s,`/`=strsplit)sapply(el(s/" \+ ")/"x\^",strtoi)
Try it online!
I really wanted to use outer
, so there's almost surely a more efficient approach.
$endgroup$
add a comment |
$begingroup$
R, 159 153 bytes
function(P,Q,a=h(P),b=h(Q))paste0(b[1,]%o%a[1,],"x^",outer(b[2,],a[2,],"+"),collapse=" + ")
h=function(s,`/`=strsplit)sapply(el(s/" \+ ")/"x\^",strtoi)
Try it online!
I really wanted to use outer
, so there's almost surely a more efficient approach.
$endgroup$
add a comment |
$begingroup$
R, 159 153 bytes
function(P,Q,a=h(P),b=h(Q))paste0(b[1,]%o%a[1,],"x^",outer(b[2,],a[2,],"+"),collapse=" + ")
h=function(s,`/`=strsplit)sapply(el(s/" \+ ")/"x\^",strtoi)
Try it online!
I really wanted to use outer
, so there's almost surely a more efficient approach.
$endgroup$
R, 159 153 bytes
function(P,Q,a=h(P),b=h(Q))paste0(b[1,]%o%a[1,],"x^",outer(b[2,],a[2,],"+"),collapse=" + ")
h=function(s,`/`=strsplit)sapply(el(s/" \+ ")/"x\^",strtoi)
Try it online!
I really wanted to use outer
, so there's almost surely a more efficient approach.
edited 12 hours ago
answered 12 hours ago
GiuseppeGiuseppe
17.7k31153
17.7k31153
add a comment |
add a comment |
$begingroup$
Pyth - 39 bytes
LmsMcdK"x^"%2cb)j" + "m++*FhdKsedCM*FyM
Try it online.
$endgroup$
add a comment |
$begingroup$
Pyth - 39 bytes
LmsMcdK"x^"%2cb)j" + "m++*FhdKsedCM*FyM
Try it online.
$endgroup$
add a comment |
$begingroup$
Pyth - 39 bytes
LmsMcdK"x^"%2cb)j" + "m++*FhdKsedCM*FyM
Try it online.
$endgroup$
Pyth - 39 bytes
LmsMcdK"x^"%2cb)j" + "m++*FhdKsedCM*FyM
Try it online.
answered 13 hours ago
MaltysenMaltysen
21.3k445116
21.3k445116
add a comment |
add a comment |
$begingroup$
Haskell, 124 bytes
import Data.Lists
s=splitOn
z=map(map read.s"x^").s"+"
a#b=intercalate" + "[shows(u*p)"x^"++show(v+q)|[u,v]<-z a,[p,q]<-z b]
Note: TIO lacks Data.Lists
, so I import Data.Lists.Split
and Data.List
: Try it online!
$endgroup$
add a comment |
$begingroup$
Haskell, 124 bytes
import Data.Lists
s=splitOn
z=map(map read.s"x^").s"+"
a#b=intercalate" + "[shows(u*p)"x^"++show(v+q)|[u,v]<-z a,[p,q]<-z b]
Note: TIO lacks Data.Lists
, so I import Data.Lists.Split
and Data.List
: Try it online!
$endgroup$
add a comment |
$begingroup$
Haskell, 124 bytes
import Data.Lists
s=splitOn
z=map(map read.s"x^").s"+"
a#b=intercalate" + "[shows(u*p)"x^"++show(v+q)|[u,v]<-z a,[p,q]<-z b]
Note: TIO lacks Data.Lists
, so I import Data.Lists.Split
and Data.List
: Try it online!
$endgroup$
Haskell, 124 bytes
import Data.Lists
s=splitOn
z=map(map read.s"x^").s"+"
a#b=intercalate" + "[shows(u*p)"x^"++show(v+q)|[u,v]<-z a,[p,q]<-z b]
Note: TIO lacks Data.Lists
, so I import Data.Lists.Split
and Data.List
: Try it online!
answered 13 hours ago
niminimi
32.7k32489
32.7k32489
add a comment |
add a comment |
$begingroup$
Ruby, 102 bytes
->a,b{a.scan(w=/(-?d+)x.(d+)/).product(b.scan w).map{|x,y|(eval"[%s*(z=%s;%s),z+%s]"%x+=y)*"x^"}*?+}
Try it online!
$endgroup$
add a comment |
$begingroup$
Ruby, 102 bytes
->a,b{a.scan(w=/(-?d+)x.(d+)/).product(b.scan w).map{|x,y|(eval"[%s*(z=%s;%s),z+%s]"%x+=y)*"x^"}*?+}
Try it online!
$endgroup$
add a comment |
$begingroup$
Ruby, 102 bytes
->a,b{a.scan(w=/(-?d+)x.(d+)/).product(b.scan w).map{|x,y|(eval"[%s*(z=%s;%s),z+%s]"%x+=y)*"x^"}*?+}
Try it online!
$endgroup$
Ruby, 102 bytes
->a,b{a.scan(w=/(-?d+)x.(d+)/).product(b.scan w).map{|x,y|(eval"[%s*(z=%s;%s),z+%s]"%x+=y)*"x^"}*?+}
Try it online!
edited 12 hours ago
answered 13 hours ago
G BG B
8,2661429
8,2661429
add a comment |
add a comment |
$begingroup$
JavaScript, 112 bytes
I found three alternatives with the same length. Call with currying syntax.
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
f=
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
$endgroup$
$begingroup$
split' + ' => split'+'
to save 2 bytes
$endgroup$
– Luis felipe De jesus Munoz
10 hours ago
$begingroup$
@Arnauld Seems fine without them
$endgroup$
– Embodiment of Ignorance
8 hours ago
$begingroup$
@EmbodimentofIgnorance My bad, I misread Luis' comment. I thought it was about thejoin
.
$endgroup$
– Arnauld
8 hours ago
add a comment |
$begingroup$
JavaScript, 112 bytes
I found three alternatives with the same length. Call with currying syntax.
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
f=
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
$endgroup$
$begingroup$
split' + ' => split'+'
to save 2 bytes
$endgroup$
– Luis felipe De jesus Munoz
10 hours ago
$begingroup$
@Arnauld Seems fine without them
$endgroup$
– Embodiment of Ignorance
8 hours ago
$begingroup$
@EmbodimentofIgnorance My bad, I misread Luis' comment. I thought it was about thejoin
.
$endgroup$
– Arnauld
8 hours ago
add a comment |
$begingroup$
JavaScript, 112 bytes
I found three alternatives with the same length. Call with currying syntax.
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
f=
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
$endgroup$
JavaScript, 112 bytes
I found three alternatives with the same length. Call with currying syntax.
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
f=
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(a=>P(B).map(b=>a[0]*b[0]+'x^'+(a[1]- -b[1]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
f=
A=>B=>(P=x=>x.split` + `.map(x=>x.split`x^`))(A).flatMap(([c,e])=>P(B).map(([C,E])=>c*C+'x^'+(e- -E))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
f=
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
f=
A=>B=>(P=x=>[...x.matchAll(/(S+)x.(S+)/g)])(A).flatMap(a=>P(B).map(b=>a[1]*b[1]+'x^'+(a[2]- -b[2]))).join` + `
console.log( f('5x^4')('3x^23') )
console.log( f('6x^2 + 7x^1 + -2x^0')('1x^2 + -2x^3') )
console.log( f('3x^1 + 5x^2 + 2x^4 + 3x^0')('3x^0') )
console.log( f('4x^3 + -2x^14 + 54x^28 + -4x^5')('-0x^7') )
console.log( f('4x^3 + -2x^4 + 0x^255 + -4x^5')('-3x^4 + 2x^2') )
edited 11 hours ago
answered 11 hours ago
darrylyeodarrylyeo
5,2641034
5,2641034
$begingroup$
split' + ' => split'+'
to save 2 bytes
$endgroup$
– Luis felipe De jesus Munoz
10 hours ago
$begingroup$
@Arnauld Seems fine without them
$endgroup$
– Embodiment of Ignorance
8 hours ago
$begingroup$
@EmbodimentofIgnorance My bad, I misread Luis' comment. I thought it was about thejoin
.
$endgroup$
– Arnauld
8 hours ago
add a comment |
$begingroup$
split' + ' => split'+'
to save 2 bytes
$endgroup$
– Luis felipe De jesus Munoz
10 hours ago
$begingroup$
@Arnauld Seems fine without them
$endgroup$
– Embodiment of Ignorance
8 hours ago
$begingroup$
@EmbodimentofIgnorance My bad, I misread Luis' comment. I thought it was about thejoin
.
$endgroup$
– Arnauld
8 hours ago
$begingroup$
split' + ' => split'+'
to save 2 bytes$endgroup$
– Luis felipe De jesus Munoz
10 hours ago
$begingroup$
split' + ' => split'+'
to save 2 bytes$endgroup$
– Luis felipe De jesus Munoz
10 hours ago
$begingroup$
@Arnauld Seems fine without them
$endgroup$
– Embodiment of Ignorance
8 hours ago
$begingroup$
@Arnauld Seems fine without them
$endgroup$
– Embodiment of Ignorance
8 hours ago
$begingroup$
@EmbodimentofIgnorance My bad, I misread Luis' comment. I thought it was about the
join
.$endgroup$
– Arnauld
8 hours ago
$begingroup$
@EmbodimentofIgnorance My bad, I misread Luis' comment. I thought it was about the
join
.$endgroup$
– Arnauld
8 hours ago
add a comment |
$begingroup$
Jelly, 28 bytes
ṣ”+ṣ”xV$€)p/ZPSƭ€j⁾x^Ʋ€j“ +
Try it online!
Full program. Takes the two polynomials as a list of two strings.
$endgroup$
add a comment |
$begingroup$
Jelly, 28 bytes
ṣ”+ṣ”xV$€)p/ZPSƭ€j⁾x^Ʋ€j“ +
Try it online!
Full program. Takes the two polynomials as a list of two strings.
$endgroup$
add a comment |
$begingroup$
Jelly, 28 bytes
ṣ”+ṣ”xV$€)p/ZPSƭ€j⁾x^Ʋ€j“ +
Try it online!
Full program. Takes the two polynomials as a list of two strings.
$endgroup$
Jelly, 28 bytes
ṣ”+ṣ”xV$€)p/ZPSƭ€j⁾x^Ʋ€j“ +
Try it online!
Full program. Takes the two polynomials as a list of two strings.
answered 8 hours ago
Erik the OutgolferErik the Outgolfer
33k429106
33k429106
add a comment |
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 192 190 188 bytes
n=>m=>string.Join(g="+",from a in n.Split(g)from b in m.Split(g)select f(a.Split(p="x^")[0])*f(b.Split(p)[0])+p+(f(a.Split(p)[1])+f(b.Split(p)[1])));Func<string,int>f=int.Parse;string p,g;
Query syntax seems to be a byte shorter than method syntax.
At least I beat SNOBOL.
Try it online!
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 192 190 188 bytes
n=>m=>string.Join(g="+",from a in n.Split(g)from b in m.Split(g)select f(a.Split(p="x^")[0])*f(b.Split(p)[0])+p+(f(a.Split(p)[1])+f(b.Split(p)[1])));Func<string,int>f=int.Parse;string p,g;
Query syntax seems to be a byte shorter than method syntax.
At least I beat SNOBOL.
Try it online!
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 192 190 188 bytes
n=>m=>string.Join(g="+",from a in n.Split(g)from b in m.Split(g)select f(a.Split(p="x^")[0])*f(b.Split(p)[0])+p+(f(a.Split(p)[1])+f(b.Split(p)[1])));Func<string,int>f=int.Parse;string p,g;
Query syntax seems to be a byte shorter than method syntax.
At least I beat SNOBOL.
Try it online!
$endgroup$
C# (Visual C# Interactive Compiler), 192 190 188 bytes
n=>m=>string.Join(g="+",from a in n.Split(g)from b in m.Split(g)select f(a.Split(p="x^")[0])*f(b.Split(p)[0])+p+(f(a.Split(p)[1])+f(b.Split(p)[1])));Func<string,int>f=int.Parse;string p,g;
Query syntax seems to be a byte shorter than method syntax.
At least I beat SNOBOL.
Try it online!
edited 5 hours ago
answered 8 hours ago
Embodiment of IgnoranceEmbodiment of Ignorance
2,926127
2,926127
add a comment |
add a comment |
$begingroup$
SNOBOL4 (CSNOBOL4), 192 176 bytes
P =INPUT
Q =INPUT
D =SPAN(-1234567890)
P P D . K ARB D . W REM . P :F(O)
B =Q
B B D . C ARB D . E REM . B :F(P)
O =O ' + ' K * C 'x^' W + E :(B)
O O ' + ' REM . OUTPUT
END
Try it online!
P =INPUT ;* read P
Q =INPUT ;* read Q
D =SPAN(-1234567890) ;* save PATTERN for Digits (or a - sign); equivalent to [0-9\-]+
P P D . K ARB D . W REM . P :F(O) ;* save the Koefficient and the poWer, saving the REMainder as P, or if no match, goto O
B =Q ;* set B = Q
B B D . C ARB D . E REM . B :F(P) ;* save the Coefficient and the powEr, saving the REMainder as B, or if no match, goto P
O =O ' + ' K * C 'x^' W + E :(B) ;* accumulate the output
O O ' + ' REM . OUTPUT ;* match ' + ' and OUTPUT the REMainder
END
$endgroup$
add a comment |
$begingroup$
SNOBOL4 (CSNOBOL4), 192 176 bytes
P =INPUT
Q =INPUT
D =SPAN(-1234567890)
P P D . K ARB D . W REM . P :F(O)
B =Q
B B D . C ARB D . E REM . B :F(P)
O =O ' + ' K * C 'x^' W + E :(B)
O O ' + ' REM . OUTPUT
END
Try it online!
P =INPUT ;* read P
Q =INPUT ;* read Q
D =SPAN(-1234567890) ;* save PATTERN for Digits (or a - sign); equivalent to [0-9\-]+
P P D . K ARB D . W REM . P :F(O) ;* save the Koefficient and the poWer, saving the REMainder as P, or if no match, goto O
B =Q ;* set B = Q
B B D . C ARB D . E REM . B :F(P) ;* save the Coefficient and the powEr, saving the REMainder as B, or if no match, goto P
O =O ' + ' K * C 'x^' W + E :(B) ;* accumulate the output
O O ' + ' REM . OUTPUT ;* match ' + ' and OUTPUT the REMainder
END
$endgroup$
add a comment |
$begingroup$
SNOBOL4 (CSNOBOL4), 192 176 bytes
P =INPUT
Q =INPUT
D =SPAN(-1234567890)
P P D . K ARB D . W REM . P :F(O)
B =Q
B B D . C ARB D . E REM . B :F(P)
O =O ' + ' K * C 'x^' W + E :(B)
O O ' + ' REM . OUTPUT
END
Try it online!
P =INPUT ;* read P
Q =INPUT ;* read Q
D =SPAN(-1234567890) ;* save PATTERN for Digits (or a - sign); equivalent to [0-9\-]+
P P D . K ARB D . W REM . P :F(O) ;* save the Koefficient and the poWer, saving the REMainder as P, or if no match, goto O
B =Q ;* set B = Q
B B D . C ARB D . E REM . B :F(P) ;* save the Coefficient and the powEr, saving the REMainder as B, or if no match, goto P
O =O ' + ' K * C 'x^' W + E :(B) ;* accumulate the output
O O ' + ' REM . OUTPUT ;* match ' + ' and OUTPUT the REMainder
END
$endgroup$
SNOBOL4 (CSNOBOL4), 192 176 bytes
P =INPUT
Q =INPUT
D =SPAN(-1234567890)
P P D . K ARB D . W REM . P :F(O)
B =Q
B B D . C ARB D . E REM . B :F(P)
O =O ' + ' K * C 'x^' W + E :(B)
O O ' + ' REM . OUTPUT
END
Try it online!
P =INPUT ;* read P
Q =INPUT ;* read Q
D =SPAN(-1234567890) ;* save PATTERN for Digits (or a - sign); equivalent to [0-9\-]+
P P D . K ARB D . W REM . P :F(O) ;* save the Koefficient and the poWer, saving the REMainder as P, or if no match, goto O
B =Q ;* set B = Q
B B D . C ARB D . E REM . B :F(P) ;* save the Coefficient and the powEr, saving the REMainder as B, or if no match, goto P
O =O ' + ' K * C 'x^' W + E :(B) ;* accumulate the output
O O ' + ' REM . OUTPUT ;* match ' + ' and OUTPUT the REMainder
END
edited 5 hours ago
answered 12 hours ago
GiuseppeGiuseppe
17.7k31153
17.7k31153
add a comment |
add a comment |
$begingroup$
Python 2, 130 bytes
lambda a,b:' + '.join([`v*V`+'x^'+`k+K`for V,K in g(a)for v,k in g(b)])
g=lambda s:[map(int,t.split('x^'))for t in s.split(' + ')]
Try it online!
$endgroup$
add a comment |
$begingroup$
Python 2, 130 bytes
lambda a,b:' + '.join([`v*V`+'x^'+`k+K`for V,K in g(a)for v,k in g(b)])
g=lambda s:[map(int,t.split('x^'))for t in s.split(' + ')]
Try it online!
$endgroup$
add a comment |
$begingroup$
Python 2, 130 bytes
lambda a,b:' + '.join([`v*V`+'x^'+`k+K`for V,K in g(a)for v,k in g(b)])
g=lambda s:[map(int,t.split('x^'))for t in s.split(' + ')]
Try it online!
$endgroup$
Python 2, 130 bytes
lambda a,b:' + '.join([`v*V`+'x^'+`k+K`for V,K in g(a)for v,k in g(b)])
g=lambda s:[map(int,t.split('x^'))for t in s.split(' + ')]
Try it online!
answered 2 hours ago
Chas BrownChas Brown
5,2291523
5,2291523
add a comment |
add a comment |
$begingroup$
JavaScript (Babel Node), 118 bytes
Takes input as (a)(b)
.
a=>b=>(g=s=>[...s.matchAll(/(-?d+)x.(d+)/g)])(a).flatMap(([_,x,p])=>g(b).map(([_,X,P])=>x*X+'x^'+-(-p-P))).join` + `
Try it online!
$endgroup$
add a comment |
$begingroup$
JavaScript (Babel Node), 118 bytes
Takes input as (a)(b)
.
a=>b=>(g=s=>[...s.matchAll(/(-?d+)x.(d+)/g)])(a).flatMap(([_,x,p])=>g(b).map(([_,X,P])=>x*X+'x^'+-(-p-P))).join` + `
Try it online!
$endgroup$
add a comment |
$begingroup$
JavaScript (Babel Node), 118 bytes
Takes input as (a)(b)
.
a=>b=>(g=s=>[...s.matchAll(/(-?d+)x.(d+)/g)])(a).flatMap(([_,x,p])=>g(b).map(([_,X,P])=>x*X+'x^'+-(-p-P))).join` + `
Try it online!
$endgroup$
JavaScript (Babel Node), 118 bytes
Takes input as (a)(b)
.
a=>b=>(g=s=>[...s.matchAll(/(-?d+)x.(d+)/g)])(a).flatMap(([_,x,p])=>g(b).map(([_,X,P])=>x*X+'x^'+-(-p-P))).join` + `
Try it online!
answered 12 hours ago
ArnauldArnauld
80.8k797334
80.8k797334
add a comment |
add a comment |
$begingroup$
Haskell, 133 bytes
f""=
f t|[(a,_:_:u)]<-reads t,[(i,v)]<-reads u=(a,i):f(drop 3v)
p!q=drop 3$do(a,i)<-f p;(b,j)<-f q;" + "++shows(a*b)"x^"++show(i+j)
Try it online!
f
parses a polynomial from a string, !
multiplies two of them and formats the result.
$endgroup$
add a comment |
$begingroup$
Haskell, 133 bytes
f""=
f t|[(a,_:_:u)]<-reads t,[(i,v)]<-reads u=(a,i):f(drop 3v)
p!q=drop 3$do(a,i)<-f p;(b,j)<-f q;" + "++shows(a*b)"x^"++show(i+j)
Try it online!
f
parses a polynomial from a string, !
multiplies two of them and formats the result.
$endgroup$
add a comment |
$begingroup$
Haskell, 133 bytes
f""=
f t|[(a,_:_:u)]<-reads t,[(i,v)]<-reads u=(a,i):f(drop 3v)
p!q=drop 3$do(a,i)<-f p;(b,j)<-f q;" + "++shows(a*b)"x^"++show(i+j)
Try it online!
f
parses a polynomial from a string, !
multiplies two of them and formats the result.
$endgroup$
Haskell, 133 bytes
f""=
f t|[(a,_:_:u)]<-reads t,[(i,v)]<-reads u=(a,i):f(drop 3v)
p!q=drop 3$do(a,i)<-f p;(b,j)<-f q;" + "++shows(a*b)"x^"++show(i+j)
Try it online!
f
parses a polynomial from a string, !
multiplies two of them and formats the result.
answered 11 hours ago
LynnLynn
50.8k899233
50.8k899233
add a comment |
add a comment |
$begingroup$
Python 2, 193 bytes
import re
f=re.finditer
lambda a,b:' + '.join(' + '.join(`int(m.group(1))*int(n.group(1))`+'x^'+`int(m.group(2))+int(n.group(2))`for n in f('(-?d+)x^(d+)',b))for m in f('(-?d+)x^(d+)',a))
Try it online!
Side note: First time doing a code golf challenge, so sorry if the attempt sucks haha
New contributor
$endgroup$
2
$begingroup$
Welcome to PPCG! I'm not much of a python programmer, but if your submission is longer than a SNOBOL one, there's probably room for improvement, heheh. Perhaps you can find help at Tips for Golfing in Python or Tips for Golfing in <all languages>! Hope you enjoy the time you spend here :-)
$endgroup$
– Giuseppe
10 hours ago
add a comment |
$begingroup$
Python 2, 193 bytes
import re
f=re.finditer
lambda a,b:' + '.join(' + '.join(`int(m.group(1))*int(n.group(1))`+'x^'+`int(m.group(2))+int(n.group(2))`for n in f('(-?d+)x^(d+)',b))for m in f('(-?d+)x^(d+)',a))
Try it online!
Side note: First time doing a code golf challenge, so sorry if the attempt sucks haha
New contributor
$endgroup$
2
$begingroup$
Welcome to PPCG! I'm not much of a python programmer, but if your submission is longer than a SNOBOL one, there's probably room for improvement, heheh. Perhaps you can find help at Tips for Golfing in Python or Tips for Golfing in <all languages>! Hope you enjoy the time you spend here :-)
$endgroup$
– Giuseppe
10 hours ago
add a comment |
$begingroup$
Python 2, 193 bytes
import re
f=re.finditer
lambda a,b:' + '.join(' + '.join(`int(m.group(1))*int(n.group(1))`+'x^'+`int(m.group(2))+int(n.group(2))`for n in f('(-?d+)x^(d+)',b))for m in f('(-?d+)x^(d+)',a))
Try it online!
Side note: First time doing a code golf challenge, so sorry if the attempt sucks haha
New contributor
$endgroup$
Python 2, 193 bytes
import re
f=re.finditer
lambda a,b:' + '.join(' + '.join(`int(m.group(1))*int(n.group(1))`+'x^'+`int(m.group(2))+int(n.group(2))`for n in f('(-?d+)x^(d+)',b))for m in f('(-?d+)x^(d+)',a))
Try it online!
Side note: First time doing a code golf challenge, so sorry if the attempt sucks haha
New contributor
New contributor
answered 10 hours ago
GotCubesGotCubes
1
1
New contributor
New contributor
2
$begingroup$
Welcome to PPCG! I'm not much of a python programmer, but if your submission is longer than a SNOBOL one, there's probably room for improvement, heheh. Perhaps you can find help at Tips for Golfing in Python or Tips for Golfing in <all languages>! Hope you enjoy the time you spend here :-)
$endgroup$
– Giuseppe
10 hours ago
add a comment |
2
$begingroup$
Welcome to PPCG! I'm not much of a python programmer, but if your submission is longer than a SNOBOL one, there's probably room for improvement, heheh. Perhaps you can find help at Tips for Golfing in Python or Tips for Golfing in <all languages>! Hope you enjoy the time you spend here :-)
$endgroup$
– Giuseppe
10 hours ago
2
2
$begingroup$
Welcome to PPCG! I'm not much of a python programmer, but if your submission is longer than a SNOBOL one, there's probably room for improvement, heheh. Perhaps you can find help at Tips for Golfing in Python or Tips for Golfing in <all languages>! Hope you enjoy the time you spend here :-)
$endgroup$
– Giuseppe
10 hours ago
$begingroup$
Welcome to PPCG! I'm not much of a python programmer, but if your submission is longer than a SNOBOL one, there's probably room for improvement, heheh. Perhaps you can find help at Tips for Golfing in Python or Tips for Golfing in <all languages>! Hope you enjoy the time you spend here :-)
$endgroup$
– Giuseppe
10 hours ago
add a comment |
$begingroup$
Retina, 110 bytes
SS+(?=.*n(.+))
$1#$&
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
--|-(0)
$1
Try it online! Explanation:
SS+(?=.*n(.+))
$1#$&
Prefix each term in the first input with a #
, a copy of the second input, and a space. This means that all of the terms in copies of the second input are preceded by a space and none of the terms from the first input are.
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
Match all of the copies of terms in the second input and their corresponding term from the first input. Concatenate any -
signs, multiply the coefficients, and add the indices. Finally join all of the resulting substitutions with the string +
.
--|-(0)
$1
Delete any pairs of -
s and convert -0
to 0
.
$endgroup$
add a comment |
$begingroup$
Retina, 110 bytes
SS+(?=.*n(.+))
$1#$&
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
--|-(0)
$1
Try it online! Explanation:
SS+(?=.*n(.+))
$1#$&
Prefix each term in the first input with a #
, a copy of the second input, and a space. This means that all of the terms in copies of the second input are preceded by a space and none of the terms from the first input are.
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
Match all of the copies of terms in the second input and their corresponding term from the first input. Concatenate any -
signs, multiply the coefficients, and add the indices. Finally join all of the resulting substitutions with the string +
.
--|-(0)
$1
Delete any pairs of -
s and convert -0
to 0
.
$endgroup$
add a comment |
$begingroup$
Retina, 110 bytes
SS+(?=.*n(.+))
$1#$&
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
--|-(0)
$1
Try it online! Explanation:
SS+(?=.*n(.+))
$1#$&
Prefix each term in the first input with a #
, a copy of the second input, and a space. This means that all of the terms in copies of the second input are preceded by a space and none of the terms from the first input are.
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
Match all of the copies of terms in the second input and their corresponding term from the first input. Concatenate any -
signs, multiply the coefficients, and add the indices. Finally join all of the resulting substitutions with the string +
.
--|-(0)
$1
Delete any pairs of -
s and convert -0
to 0
.
$endgroup$
Retina, 110 bytes
SS+(?=.*n(.+))
$1#$&
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
--|-(0)
$1
Try it online! Explanation:
SS+(?=.*n(.+))
$1#$&
Prefix each term in the first input with a #
, a copy of the second input, and a space. This means that all of the terms in copies of the second input are preceded by a space and none of the terms from the first input are.
|" + "L$v` (-?)(d+)x.(d+).*?#(-?)(d+)x.(d+)
$1$4$.($2*$5*)x^$.($3*_$6*
Match all of the copies of terms in the second input and their corresponding term from the first input. Concatenate any -
signs, multiply the coefficients, and add the indices. Finally join all of the resulting substitutions with the string +
.
--|-(0)
$1
Delete any pairs of -
s and convert -0
to 0
.
answered 10 hours ago
NeilNeil
82.7k745179
82.7k745179
add a comment |
add a comment |
$begingroup$
Perl 6, 114 bytes
{my&g=*.match(/(-?d+)x^(d+)/,:g)».caps».Map;join " + ",map {"{[*] $_»{0}}x^{[+] $_»{1}}"},(g($^a)X g $^b)}
Try it online!
$endgroup$
add a comment |
$begingroup$
Perl 6, 114 bytes
{my&g=*.match(/(-?d+)x^(d+)/,:g)».caps».Map;join " + ",map {"{[*] $_»{0}}x^{[+] $_»{1}}"},(g($^a)X g $^b)}
Try it online!
$endgroup$
add a comment |
$begingroup$
Perl 6, 114 bytes
{my&g=*.match(/(-?d+)x^(d+)/,:g)».caps».Map;join " + ",map {"{[*] $_»{0}}x^{[+] $_»{1}}"},(g($^a)X g $^b)}
Try it online!
$endgroup$
Perl 6, 114 bytes
{my&g=*.match(/(-?d+)x^(d+)/,:g)».caps».Map;join " + ",map {"{[*] $_»{0}}x^{[+] $_»{1}}"},(g($^a)X g $^b)}
Try it online!
answered 3 hours ago
bb94bb94
1,045611
1,045611
add a comment |
add a comment |
If this is an answer to a challenge…
…Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.
…Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
Explanations of your answer make it more interesting to read and are very much encouraged.…Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.
More generally…
…Please make sure to answer the question and provide sufficient detail.
…Avoid asking for help, clarification or responding to other answers (use comments instead).
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f182972%2fmultiply-two-integer-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
related
$endgroup$
– H.PWiz
13 hours ago
1
$begingroup$
@LuisfelipeDejesusMunoz I imagine not. Parsing is an integral part of the challenge and the OP says -- "It should be noted that any method of taking in the two polynomials is valid, provided that both are read in as strings conforming to the above format." (emphasis added)
$endgroup$
– Giuseppe
12 hours ago
$begingroup$
Your regex is wrong:
^
should be^
.$endgroup$
– Erik the Outgolfer
12 hours ago