Quickest way to find $a^5+b^5+c^5$ given that $a+b+c=1$, $a^2+b^2+c^2=2$ and $a^3+b^3+c^3=3$
$begingroup$
$$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
text{then} a^5+b^5+c^5= ?$$
A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.
Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.
What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.
algebra-precalculus systems-of-equations binomial-coefficients roots
$endgroup$
add a comment |
$begingroup$
$$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
text{then} a^5+b^5+c^5= ?$$
A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.
Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.
What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.
algebra-precalculus systems-of-equations binomial-coefficients roots
$endgroup$
add a comment |
$begingroup$
$$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
text{then} a^5+b^5+c^5= ?$$
A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.
Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.
What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.
algebra-precalculus systems-of-equations binomial-coefficients roots
$endgroup$
$$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
text{then} a^5+b^5+c^5= ?$$
A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.
Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.
What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.
algebra-precalculus systems-of-equations binomial-coefficients roots
algebra-precalculus systems-of-equations binomial-coefficients roots
edited 12 hours ago
TheSimpliFire
13.2k62464
13.2k62464
asked 15 hours ago
Lex_iLex_i
1177
1177
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
$$ab+bc+ca = -1/2, abc = 1/6.$$
With that, Vieta's formulas implies that $a,b,c$ satisfy:
$$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
Or
$$x^3 = x^2 + x/2 + 1/6.$$
That means, for $x$ equals $a,b,c$,
$$x^4 = x^3 + x^2/2 + x/6,$$
and
$$x^5 = x^4 + x^3/2 + x^2/6.$$
Adding the two equations above, we have
$$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
Now replace $x$ as $a,b,c$ and add them all up, we have
$$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$
Note: if you feels that
$$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.
$endgroup$
add a comment |
$begingroup$
Using Newton's identities
$$
begin{aligned}
e_{1}&=p_{1}\
2e_{2}&=e_{1}p_{1}-p_{2}\
3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
end{aligned}
$$
with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.
$endgroup$
add a comment |
$begingroup$
This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
$$ where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
$$
z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
$$ hence by summing over $zin {a,b,c}$, we get recurrence relation
$$
s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
$$ for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
$$
3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
$$ so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
$$
s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
$$ Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.
Note : The theory of homogeneous linear difference equations is behind it.
$endgroup$
add a comment |
$begingroup$
You can use
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,
$(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,
$(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$
$endgroup$
$begingroup$
How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
$endgroup$
– BPP
12 hours ago
$begingroup$
@BPP I don't really know
$endgroup$
– giannispapav
11 hours ago
add a comment |
$begingroup$
Fun video!
Much time was spent on finding $abc=1/6$.
Alternative method for this:
$$begin{align}a^2+b^2&=2-c^2 Rightarrow \
(a+b)^2-2ab&=2-c^2 Rightarrow \
(1-c)^2-2ab&=2-c^2 Rightarrow \
ab&=c^2-c-frac12 Rightarrow \
abc&=c^3-c^2-frac c2 end{align}$$
Similarly:
$$abc=a^3-a^2-frac a2\
abc=b^3-b^2-frac b2$$
Now adding them up:
$$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
In fact, you can find other terms as well:
$$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
frac16-frac12+frac14=-frac1{12}$$
Hence:
$$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3182260%2fquickest-way-to-find-a5b5c5-given-that-abc-1-a2b2c2-2-and-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
$$ab+bc+ca = -1/2, abc = 1/6.$$
With that, Vieta's formulas implies that $a,b,c$ satisfy:
$$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
Or
$$x^3 = x^2 + x/2 + 1/6.$$
That means, for $x$ equals $a,b,c$,
$$x^4 = x^3 + x^2/2 + x/6,$$
and
$$x^5 = x^4 + x^3/2 + x^2/6.$$
Adding the two equations above, we have
$$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
Now replace $x$ as $a,b,c$ and add them all up, we have
$$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$
Note: if you feels that
$$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.
$endgroup$
add a comment |
$begingroup$
Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
$$ab+bc+ca = -1/2, abc = 1/6.$$
With that, Vieta's formulas implies that $a,b,c$ satisfy:
$$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
Or
$$x^3 = x^2 + x/2 + 1/6.$$
That means, for $x$ equals $a,b,c$,
$$x^4 = x^3 + x^2/2 + x/6,$$
and
$$x^5 = x^4 + x^3/2 + x^2/6.$$
Adding the two equations above, we have
$$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
Now replace $x$ as $a,b,c$ and add them all up, we have
$$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$
Note: if you feels that
$$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.
$endgroup$
add a comment |
$begingroup$
Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
$$ab+bc+ca = -1/2, abc = 1/6.$$
With that, Vieta's formulas implies that $a,b,c$ satisfy:
$$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
Or
$$x^3 = x^2 + x/2 + 1/6.$$
That means, for $x$ equals $a,b,c$,
$$x^4 = x^3 + x^2/2 + x/6,$$
and
$$x^5 = x^4 + x^3/2 + x^2/6.$$
Adding the two equations above, we have
$$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
Now replace $x$ as $a,b,c$ and add them all up, we have
$$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$
Note: if you feels that
$$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.
$endgroup$
Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
$$ab+bc+ca = -1/2, abc = 1/6.$$
With that, Vieta's formulas implies that $a,b,c$ satisfy:
$$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
Or
$$x^3 = x^2 + x/2 + 1/6.$$
That means, for $x$ equals $a,b,c$,
$$x^4 = x^3 + x^2/2 + x/6,$$
and
$$x^5 = x^4 + x^3/2 + x^2/6.$$
Adding the two equations above, we have
$$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
Now replace $x$ as $a,b,c$ and add them all up, we have
$$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$
Note: if you feels that
$$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.
answered 14 hours ago
Quang HoangQuang Hoang
13.2k1233
13.2k1233
add a comment |
add a comment |
$begingroup$
Using Newton's identities
$$
begin{aligned}
e_{1}&=p_{1}\
2e_{2}&=e_{1}p_{1}-p_{2}\
3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
end{aligned}
$$
with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.
$endgroup$
add a comment |
$begingroup$
Using Newton's identities
$$
begin{aligned}
e_{1}&=p_{1}\
2e_{2}&=e_{1}p_{1}-p_{2}\
3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
end{aligned}
$$
with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.
$endgroup$
add a comment |
$begingroup$
Using Newton's identities
$$
begin{aligned}
e_{1}&=p_{1}\
2e_{2}&=e_{1}p_{1}-p_{2}\
3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
end{aligned}
$$
with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.
$endgroup$
Using Newton's identities
$$
begin{aligned}
e_{1}&=p_{1}\
2e_{2}&=e_{1}p_{1}-p_{2}\
3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
end{aligned}
$$
with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.
edited 14 hours ago
answered 14 hours ago
lhflhf
168k11172404
168k11172404
add a comment |
add a comment |
$begingroup$
This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
$$ where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
$$
z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
$$ hence by summing over $zin {a,b,c}$, we get recurrence relation
$$
s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
$$ for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
$$
3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
$$ so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
$$
s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
$$ Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.
Note : The theory of homogeneous linear difference equations is behind it.
$endgroup$
add a comment |
$begingroup$
This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
$$ where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
$$
z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
$$ hence by summing over $zin {a,b,c}$, we get recurrence relation
$$
s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
$$ for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
$$
3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
$$ so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
$$
s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
$$ Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.
Note : The theory of homogeneous linear difference equations is behind it.
$endgroup$
add a comment |
$begingroup$
This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
$$ where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
$$
z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
$$ hence by summing over $zin {a,b,c}$, we get recurrence relation
$$
s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
$$ for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
$$
3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
$$ so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
$$
s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
$$ Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.
Note : The theory of homogeneous linear difference equations is behind it.
$endgroup$
This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
$$ where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
$$
z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
$$ hence by summing over $zin {a,b,c}$, we get recurrence relation
$$
s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
$$ for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
$$
3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
$$ so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
$$
s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
$$ Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.
Note : The theory of homogeneous linear difference equations is behind it.
edited 13 hours ago
answered 13 hours ago
NaoNao
2036
2036
add a comment |
add a comment |
$begingroup$
You can use
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,
$(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,
$(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$
$endgroup$
$begingroup$
How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
$endgroup$
– BPP
12 hours ago
$begingroup$
@BPP I don't really know
$endgroup$
– giannispapav
11 hours ago
add a comment |
$begingroup$
You can use
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,
$(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,
$(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$
$endgroup$
$begingroup$
How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
$endgroup$
– BPP
12 hours ago
$begingroup$
@BPP I don't really know
$endgroup$
– giannispapav
11 hours ago
add a comment |
$begingroup$
You can use
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,
$(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,
$(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$
$endgroup$
You can use
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,
$(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,
$(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$
edited 15 hours ago
Quang Hoang
13.2k1233
13.2k1233
answered 15 hours ago
giannispapavgiannispapav
1,968325
1,968325
$begingroup$
How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
$endgroup$
– BPP
12 hours ago
$begingroup$
@BPP I don't really know
$endgroup$
– giannispapav
11 hours ago
add a comment |
$begingroup$
How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
$endgroup$
– BPP
12 hours ago
$begingroup$
@BPP I don't really know
$endgroup$
– giannispapav
11 hours ago
$begingroup$
How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
$endgroup$
– BPP
12 hours ago
$begingroup$
How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
$endgroup$
– BPP
12 hours ago
$begingroup$
@BPP I don't really know
$endgroup$
– giannispapav
11 hours ago
$begingroup$
@BPP I don't really know
$endgroup$
– giannispapav
11 hours ago
add a comment |
$begingroup$
Fun video!
Much time was spent on finding $abc=1/6$.
Alternative method for this:
$$begin{align}a^2+b^2&=2-c^2 Rightarrow \
(a+b)^2-2ab&=2-c^2 Rightarrow \
(1-c)^2-2ab&=2-c^2 Rightarrow \
ab&=c^2-c-frac12 Rightarrow \
abc&=c^3-c^2-frac c2 end{align}$$
Similarly:
$$abc=a^3-a^2-frac a2\
abc=b^3-b^2-frac b2$$
Now adding them up:
$$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
In fact, you can find other terms as well:
$$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
frac16-frac12+frac14=-frac1{12}$$
Hence:
$$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$
$endgroup$
add a comment |
$begingroup$
Fun video!
Much time was spent on finding $abc=1/6$.
Alternative method for this:
$$begin{align}a^2+b^2&=2-c^2 Rightarrow \
(a+b)^2-2ab&=2-c^2 Rightarrow \
(1-c)^2-2ab&=2-c^2 Rightarrow \
ab&=c^2-c-frac12 Rightarrow \
abc&=c^3-c^2-frac c2 end{align}$$
Similarly:
$$abc=a^3-a^2-frac a2\
abc=b^3-b^2-frac b2$$
Now adding them up:
$$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
In fact, you can find other terms as well:
$$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
frac16-frac12+frac14=-frac1{12}$$
Hence:
$$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$
$endgroup$
add a comment |
$begingroup$
Fun video!
Much time was spent on finding $abc=1/6$.
Alternative method for this:
$$begin{align}a^2+b^2&=2-c^2 Rightarrow \
(a+b)^2-2ab&=2-c^2 Rightarrow \
(1-c)^2-2ab&=2-c^2 Rightarrow \
ab&=c^2-c-frac12 Rightarrow \
abc&=c^3-c^2-frac c2 end{align}$$
Similarly:
$$abc=a^3-a^2-frac a2\
abc=b^3-b^2-frac b2$$
Now adding them up:
$$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
In fact, you can find other terms as well:
$$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
frac16-frac12+frac14=-frac1{12}$$
Hence:
$$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$
$endgroup$
Fun video!
Much time was spent on finding $abc=1/6$.
Alternative method for this:
$$begin{align}a^2+b^2&=2-c^2 Rightarrow \
(a+b)^2-2ab&=2-c^2 Rightarrow \
(1-c)^2-2ab&=2-c^2 Rightarrow \
ab&=c^2-c-frac12 Rightarrow \
abc&=c^3-c^2-frac c2 end{align}$$
Similarly:
$$abc=a^3-a^2-frac a2\
abc=b^3-b^2-frac b2$$
Now adding them up:
$$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
In fact, you can find other terms as well:
$$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
frac16-frac12+frac14=-frac1{12}$$
Hence:
$$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$
answered 11 hours ago
farruhotafarruhota
21.9k2942
21.9k2942
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3182260%2fquickest-way-to-find-a5b5c5-given-that-abc-1-a2b2c2-2-and-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown