Quickest way to find $a^5+b^5+c^5$ given that $a+b+c=1$, $a^2+b^2+c^2=2$ and $a^3+b^3+c^3=3$












6












$begingroup$



$$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
text{then} a^5+b^5+c^5= ?$$




A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.



Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.



What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.










share|cite|improve this question











$endgroup$

















    6












    $begingroup$



    $$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
    text{then} a^5+b^5+c^5= ?$$




    A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.



    Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.



    What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.










    share|cite|improve this question











    $endgroup$















      6












      6








      6


      2



      $begingroup$



      $$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
      text{then} a^5+b^5+c^5= ?$$




      A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.



      Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.



      What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.










      share|cite|improve this question











      $endgroup$





      $$text{If} cases{a+b+c=1 \ a^2+b^2+c^2=2 \a^3+b^3+c^3=3}
      text{then} a^5+b^5+c^5= ?$$




      A YouTuber solved this problem recently and, though he spent some time explaining it, took over 40 minutes to solve it.



      Like the video, the best I can do with this is relying on expansion formulas and substitution. As trivial a problem this is, the numerous trinomials and binomials with mixed terms makes it very, very tedious.



      What is the quickest/shortest approach to this problem (meaning it doesn't need to be solved algebraically)? You don't have to type the entire solution out, I think if I'm given a good hint then I can take it from there.







      algebra-precalculus systems-of-equations binomial-coefficients roots






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 12 hours ago









      TheSimpliFire

      13.2k62464




      13.2k62464










      asked 15 hours ago









      Lex_iLex_i

      1177




      1177






















          5 Answers
          5






          active

          oldest

          votes


















          5












          $begingroup$

          Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
          $$ab+bc+ca = -1/2, abc = 1/6.$$



          With that, Vieta's formulas implies that $a,b,c$ satisfy:
          $$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
          Or
          $$x^3 = x^2 + x/2 + 1/6.$$



          That means, for $x$ equals $a,b,c$,
          $$x^4 = x^3 + x^2/2 + x/6,$$
          and
          $$x^5 = x^4 + x^3/2 + x^2/6.$$
          Adding the two equations above, we have
          $$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
          Now replace $x$ as $a,b,c$ and add them all up, we have
          $$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$





          Note: if you feels that
          $$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
          is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            Using Newton's identities



            $$
            begin{aligned}
            e_{1}&=p_{1}\
            2e_{2}&=e_{1}p_{1}-p_{2}\
            3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
            4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
            5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
            end{aligned}
            $$

            with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.






            share|cite|improve this answer











            $endgroup$





















              2












              $begingroup$

              This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
              P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
              $$
              where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
              $$
              z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
              $$
              hence by summing over $zin {a,b,c}$, we get recurrence relation
              $$
              s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
              $$
              for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
              $$
              3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
              $$
              so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
              $$
              s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
              $$
              Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.

              Note : The theory of homogeneous linear difference equations is behind it.






              share|cite|improve this answer











              $endgroup$





















                1












                $begingroup$

                You can use



                $a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,



                $(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,



                $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,



                $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
                  $endgroup$
                  – BPP
                  12 hours ago










                • $begingroup$
                  @BPP I don't really know
                  $endgroup$
                  – giannispapav
                  11 hours ago



















                0












                $begingroup$

                Fun video!



                Much time was spent on finding $abc=1/6$.



                Alternative method for this:
                $$begin{align}a^2+b^2&=2-c^2 Rightarrow \
                (a+b)^2-2ab&=2-c^2 Rightarrow \
                (1-c)^2-2ab&=2-c^2 Rightarrow \
                ab&=c^2-c-frac12 Rightarrow \
                abc&=c^3-c^2-frac c2 end{align}$$

                Similarly:
                $$abc=a^3-a^2-frac a2\
                abc=b^3-b^2-frac b2$$

                Now adding them up:
                $$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
                In fact, you can find other terms as well:
                $$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
                a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
                abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
                frac16-frac12+frac14=-frac1{12}$$

                Hence:
                $$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
                2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$






                share|cite|improve this answer









                $endgroup$














                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3182260%2fquickest-way-to-find-a5b5c5-given-that-abc-1-a2b2c2-2-and-a%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  5












                  $begingroup$

                  Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
                  $$ab+bc+ca = -1/2, abc = 1/6.$$



                  With that, Vieta's formulas implies that $a,b,c$ satisfy:
                  $$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
                  Or
                  $$x^3 = x^2 + x/2 + 1/6.$$



                  That means, for $x$ equals $a,b,c$,
                  $$x^4 = x^3 + x^2/2 + x/6,$$
                  and
                  $$x^5 = x^4 + x^3/2 + x^2/6.$$
                  Adding the two equations above, we have
                  $$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
                  Now replace $x$ as $a,b,c$ and add them all up, we have
                  $$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$





                  Note: if you feels that
                  $$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
                  is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.






                  share|cite|improve this answer









                  $endgroup$


















                    5












                    $begingroup$

                    Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
                    $$ab+bc+ca = -1/2, abc = 1/6.$$



                    With that, Vieta's formulas implies that $a,b,c$ satisfy:
                    $$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
                    Or
                    $$x^3 = x^2 + x/2 + 1/6.$$



                    That means, for $x$ equals $a,b,c$,
                    $$x^4 = x^3 + x^2/2 + x/6,$$
                    and
                    $$x^5 = x^4 + x^3/2 + x^2/6.$$
                    Adding the two equations above, we have
                    $$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
                    Now replace $x$ as $a,b,c$ and add them all up, we have
                    $$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$





                    Note: if you feels that
                    $$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
                    is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.






                    share|cite|improve this answer









                    $endgroup$
















                      5












                      5








                      5





                      $begingroup$

                      Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
                      $$ab+bc+ca = -1/2, abc = 1/6.$$



                      With that, Vieta's formulas implies that $a,b,c$ satisfy:
                      $$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
                      Or
                      $$x^3 = x^2 + x/2 + 1/6.$$



                      That means, for $x$ equals $a,b,c$,
                      $$x^4 = x^3 + x^2/2 + x/6,$$
                      and
                      $$x^5 = x^4 + x^3/2 + x^2/6.$$
                      Adding the two equations above, we have
                      $$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
                      Now replace $x$ as $a,b,c$ and add them all up, we have
                      $$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$





                      Note: if you feels that
                      $$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
                      is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.






                      share|cite|improve this answer









                      $endgroup$



                      Let's start with the basic symmetric expressions: $ab+bc+ca$ and $abc$. You can refer to giannispapav's answer for details, which shows that
                      $$ab+bc+ca = -1/2, abc = 1/6.$$



                      With that, Vieta's formulas implies that $a,b,c$ satisfy:
                      $$ x^3 -x^2 - x/2 -1/6=0,tag{1}$$
                      Or
                      $$x^3 = x^2 + x/2 + 1/6.$$



                      That means, for $x$ equals $a,b,c$,
                      $$x^4 = x^3 + x^2/2 + x/6,$$
                      and
                      $$x^5 = x^4 + x^3/2 + x^2/6.$$
                      Adding the two equations above, we have
                      $$x^5 = frac32x^3 + frac23x^2 + frac16x.$$
                      Now replace $x$ as $a,b,c$ and add them all up, we have
                      $$a^5+b^5+c^5 = frac32(a^3+b^3+c^3) + frac23(a^2+b^2+c^2) + frac16(a+b+c).$$





                      Note: if you feels that
                      $$a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)$$
                      is too complicated to verify, then Vieta's formulas is the way to go. That is, replace $a,b, c$ in Equation $1$ and add them up, where $1/6$ is indeed $abc$ as in Vieta's formula.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 14 hours ago









                      Quang HoangQuang Hoang

                      13.2k1233




                      13.2k1233























                          4












                          $begingroup$

                          Using Newton's identities



                          $$
                          begin{aligned}
                          e_{1}&=p_{1}\
                          2e_{2}&=e_{1}p_{1}-p_{2}\
                          3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
                          4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
                          5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
                          end{aligned}
                          $$

                          with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.






                          share|cite|improve this answer











                          $endgroup$


















                            4












                            $begingroup$

                            Using Newton's identities



                            $$
                            begin{aligned}
                            e_{1}&=p_{1}\
                            2e_{2}&=e_{1}p_{1}-p_{2}\
                            3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
                            4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
                            5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
                            end{aligned}
                            $$

                            with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.






                            share|cite|improve this answer











                            $endgroup$
















                              4












                              4








                              4





                              $begingroup$

                              Using Newton's identities



                              $$
                              begin{aligned}
                              e_{1}&=p_{1}\
                              2e_{2}&=e_{1}p_{1}-p_{2}\
                              3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
                              4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
                              5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
                              end{aligned}
                              $$

                              with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.






                              share|cite|improve this answer











                              $endgroup$



                              Using Newton's identities



                              $$
                              begin{aligned}
                              e_{1}&=p_{1}\
                              2e_{2}&=e_{1}p_{1}-p_{2}\
                              3e_{3}&=e_{2}p_{1}-e_{1}p_{2}+p_{3}\
                              4e_{4}&=e_{3}p_{1}-e_{2}p_{2}+e_{1}p_{3}-p_{4}\
                              5e_{5}&=e_{4}p_{1}-e_{3}p_{2}+e_{2}p_{3}-e_{1}p_{4}+p_{5}\
                              end{aligned}
                              $$

                              with $p_1=1,p_2=2,p_3=3,e_4=0, e_5=0$, we get $p_5 = 6$.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited 14 hours ago

























                              answered 14 hours ago









                              lhflhf

                              168k11172404




                              168k11172404























                                  2












                                  $begingroup$

                                  This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
                                  P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
                                  $$
                                  where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
                                  $$
                                  z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
                                  $$
                                  hence by summing over $zin {a,b,c}$, we get recurrence relation
                                  $$
                                  s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
                                  $$
                                  for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
                                  $$
                                  3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
                                  $$
                                  so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
                                  $$
                                  s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
                                  $$
                                  Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.

                                  Note : The theory of homogeneous linear difference equations is behind it.






                                  share|cite|improve this answer











                                  $endgroup$


















                                    2












                                    $begingroup$

                                    This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
                                    P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
                                    $$
                                    where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
                                    $$
                                    z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
                                    $$
                                    hence by summing over $zin {a,b,c}$, we get recurrence relation
                                    $$
                                    s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
                                    $$
                                    for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
                                    $$
                                    3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
                                    $$
                                    so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
                                    $$
                                    s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
                                    $$
                                    Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.

                                    Note : The theory of homogeneous linear difference equations is behind it.






                                    share|cite|improve this answer











                                    $endgroup$
















                                      2












                                      2








                                      2





                                      $begingroup$

                                      This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
                                      P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
                                      $$
                                      where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
                                      $$
                                      z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
                                      $$
                                      hence by summing over $zin {a,b,c}$, we get recurrence relation
                                      $$
                                      s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
                                      $$
                                      for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
                                      $$
                                      3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
                                      $$
                                      so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
                                      $$
                                      s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
                                      $$
                                      Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.

                                      Note : The theory of homogeneous linear difference equations is behind it.






                                      share|cite|improve this answer











                                      $endgroup$



                                      This answer is almost in the same spirit as @Quang Hoang's, but I hope this answer will add something. Let $$
                                      P(z) = (z-a)(z-b)(z-c)=z^3-sigma_1 z^2+sigma_2 z-sigma_3
                                      $$
                                      where $sigma_1=a+b+c$, $sigma_2=ab+bc+ca$ and $sigma_3=abc$ by Vieta's formula. Note that for $zin {a,b,c}$,
                                      $$
                                      z^{n+3} =sigma_1 z^{n+2}-sigma_2 z^{n+1}+sigma_3 z^n,
                                      $$
                                      hence by summing over $zin {a,b,c}$, we get recurrence relation
                                      $$
                                      s_{n+3}= sigma_1 s_{n+2}-sigma_2 s_{n+1}+sigma_3 s_n
                                      $$
                                      for $s_n = a^n+b^n+c^n$. Given the data, it can be easily noted that $$sigma_1=1 ,quad sigma_2 =frac 12 left((a+b+c)^2-(a^2+b^2+c^2)right)=-frac 12.$$ And by plugging $n=0$, we obtain
                                      $$
                                      3=1cdot 2+frac 12cdot 1 +sigma_3 s_0=2.5 + sigma_3s_0,
                                      $$
                                      so $sigma_3=abcne 0$ and $s_0=a^0+b^0+c^0=3$. This gives $sigma_3=frac 1 6$, implying that
                                      $$
                                      s_{n+3}=s_{n+2}+frac 12 s_{n+1}+frac 1 6 s_{n},quad forall nge 0.
                                      $$
                                      Now $s_4 =frac {25}{6}$ and $s_5=6$ follows from the initial data $(s_3,s_2,s_1)=(3,2,1)$.

                                      Note : The theory of homogeneous linear difference equations is behind it.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited 13 hours ago

























                                      answered 13 hours ago









                                      NaoNao

                                      2036




                                      2036























                                          1












                                          $begingroup$

                                          You can use



                                          $a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,



                                          $(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,



                                          $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,



                                          $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$






                                          share|cite|improve this answer











                                          $endgroup$













                                          • $begingroup$
                                            How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
                                            $endgroup$
                                            – BPP
                                            12 hours ago










                                          • $begingroup$
                                            @BPP I don't really know
                                            $endgroup$
                                            – giannispapav
                                            11 hours ago
















                                          1












                                          $begingroup$

                                          You can use



                                          $a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,



                                          $(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,



                                          $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,



                                          $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$






                                          share|cite|improve this answer











                                          $endgroup$













                                          • $begingroup$
                                            How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
                                            $endgroup$
                                            – BPP
                                            12 hours ago










                                          • $begingroup$
                                            @BPP I don't really know
                                            $endgroup$
                                            – giannispapav
                                            11 hours ago














                                          1












                                          1








                                          1





                                          $begingroup$

                                          You can use



                                          $a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,



                                          $(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,



                                          $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,



                                          $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$






                                          share|cite|improve this answer











                                          $endgroup$



                                          You can use



                                          $a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)$,



                                          $(ab+ac+bc)^2=a^2+b^2+c^2+2(ab+ac+bc)$,



                                          $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$,



                                          $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$







                                          share|cite|improve this answer














                                          share|cite|improve this answer



                                          share|cite|improve this answer








                                          edited 15 hours ago









                                          Quang Hoang

                                          13.2k1233




                                          13.2k1233










                                          answered 15 hours ago









                                          giannispapavgiannispapav

                                          1,968325




                                          1,968325












                                          • $begingroup$
                                            How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
                                            $endgroup$
                                            – BPP
                                            12 hours ago










                                          • $begingroup$
                                            @BPP I don't really know
                                            $endgroup$
                                            – giannispapav
                                            11 hours ago


















                                          • $begingroup$
                                            How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
                                            $endgroup$
                                            – BPP
                                            12 hours ago










                                          • $begingroup$
                                            @BPP I don't really know
                                            $endgroup$
                                            – giannispapav
                                            11 hours ago
















                                          $begingroup$
                                          How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
                                          $endgroup$
                                          – BPP
                                          12 hours ago




                                          $begingroup$
                                          How could one guess such relations? $(a+b+c)^5-a^5-b^5-c^5=(a+b)(a+c)(b+c)(a^2+b^2+c^2+ab+ac+bc)$?
                                          $endgroup$
                                          – BPP
                                          12 hours ago












                                          $begingroup$
                                          @BPP I don't really know
                                          $endgroup$
                                          – giannispapav
                                          11 hours ago




                                          $begingroup$
                                          @BPP I don't really know
                                          $endgroup$
                                          – giannispapav
                                          11 hours ago











                                          0












                                          $begingroup$

                                          Fun video!



                                          Much time was spent on finding $abc=1/6$.



                                          Alternative method for this:
                                          $$begin{align}a^2+b^2&=2-c^2 Rightarrow \
                                          (a+b)^2-2ab&=2-c^2 Rightarrow \
                                          (1-c)^2-2ab&=2-c^2 Rightarrow \
                                          ab&=c^2-c-frac12 Rightarrow \
                                          abc&=c^3-c^2-frac c2 end{align}$$

                                          Similarly:
                                          $$abc=a^3-a^2-frac a2\
                                          abc=b^3-b^2-frac b2$$

                                          Now adding them up:
                                          $$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
                                          In fact, you can find other terms as well:
                                          $$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
                                          a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
                                          abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
                                          frac16-frac12+frac14=-frac1{12}$$

                                          Hence:
                                          $$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
                                          2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            Fun video!



                                            Much time was spent on finding $abc=1/6$.



                                            Alternative method for this:
                                            $$begin{align}a^2+b^2&=2-c^2 Rightarrow \
                                            (a+b)^2-2ab&=2-c^2 Rightarrow \
                                            (1-c)^2-2ab&=2-c^2 Rightarrow \
                                            ab&=c^2-c-frac12 Rightarrow \
                                            abc&=c^3-c^2-frac c2 end{align}$$

                                            Similarly:
                                            $$abc=a^3-a^2-frac a2\
                                            abc=b^3-b^2-frac b2$$

                                            Now adding them up:
                                            $$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
                                            In fact, you can find other terms as well:
                                            $$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
                                            a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
                                            abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
                                            frac16-frac12+frac14=-frac1{12}$$

                                            Hence:
                                            $$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
                                            2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Fun video!



                                              Much time was spent on finding $abc=1/6$.



                                              Alternative method for this:
                                              $$begin{align}a^2+b^2&=2-c^2 Rightarrow \
                                              (a+b)^2-2ab&=2-c^2 Rightarrow \
                                              (1-c)^2-2ab&=2-c^2 Rightarrow \
                                              ab&=c^2-c-frac12 Rightarrow \
                                              abc&=c^3-c^2-frac c2 end{align}$$

                                              Similarly:
                                              $$abc=a^3-a^2-frac a2\
                                              abc=b^3-b^2-frac b2$$

                                              Now adding them up:
                                              $$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
                                              In fact, you can find other terms as well:
                                              $$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
                                              a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
                                              abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
                                              frac16-frac12+frac14=-frac1{12}$$

                                              Hence:
                                              $$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
                                              2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$






                                              share|cite|improve this answer









                                              $endgroup$



                                              Fun video!



                                              Much time was spent on finding $abc=1/6$.



                                              Alternative method for this:
                                              $$begin{align}a^2+b^2&=2-c^2 Rightarrow \
                                              (a+b)^2-2ab&=2-c^2 Rightarrow \
                                              (1-c)^2-2ab&=2-c^2 Rightarrow \
                                              ab&=c^2-c-frac12 Rightarrow \
                                              abc&=c^3-c^2-frac c2 end{align}$$

                                              Similarly:
                                              $$abc=a^3-a^2-frac a2\
                                              abc=b^3-b^2-frac b2$$

                                              Now adding them up:
                                              $$3abc=(a^3+b^3+c^3)-(a^2+b^2+c^2)-frac12(a+b+c)=3-2-frac12 Rightarrow abc=frac16.$$
                                              In fact, you can find other terms as well:
                                              $$ab+bc+ca=(a^2+b^2+c^2)-(a+b+c)-frac32=2-1-frac32=-frac12;\
                                              a^2b^2+b^2c^2+c^2a^2=ab(c^2-c-frac12)+bc(a^2-a-frac12)+ca(b^2-b-frac12)=\
                                              abc(a+b+c)-3abc-frac12(ab+bc+ca)=\
                                              frac16-frac12+frac14=-frac1{12}$$

                                              Hence:
                                              $$a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-(a^2b^2+b^2c^2+c^2a^2)+abc(ab+bc+ca)=\
                                              2cdot 3-(-frac1{12})+frac16cdot (-frac12)=6.$$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 11 hours ago









                                              farruhotafarruhota

                                              21.9k2942




                                              21.9k2942






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3182260%2fquickest-way-to-find-a5b5c5-given-that-abc-1-a2b2c2-2-and-a%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                                                  He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                                                  Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029