What is the value of $alpha$ and $beta$ in a triangle?Proof that the angle sum of a triangle is always greater than 180 degrees in elliptic geometryWhat characteristic of the triangle leads the the existence of the orthocenter$sinalpha+sinbeta+singamma>2$ Where $alpha$, $beta$ and $gamma$ are angles from an acute-angled triangle.Show that for triangle ABC, with complex numbers for the coordinates, that we have the following equationProving $cscfracalpha2+cscfracbeta2+cscfracgamma2 ge 6$, where $alpha$, $beta$, $gamma$ are the angles of a trianglePoint in a triangle plane determining any anglesGiven sides and a bisection, find angles in a triangleHow to find triangle height if I know its area and anglesFind angle given two isosceles triangles.Solving for the value of $ angle CEB$ - $frac14$ $angle CBA$ where $E$ is an exterior point of $triangle ABC$

My first c++ game (snake console game)

Extra space in cells when using token lists to build tabular content

What is this weird transparent border appearing inside my Smart Object in Photoshop?

Is there precedent or are there procedures for a US president refusing to concede to an electoral defeat?

Hostile Divisor Numbers

What do I do if my advisor made a mistake?

Gladys unchained

What was Bran's plan to kill the Night King?

Why did the Apollo 13 crew extend the LM landing gear?

How is Per Object Storage Usage Calculated

Why wasn't the Z6 version of the Infocom Z-machine ported to the IIgs?

Start job from another SQL server instance

Is 'contemporary' ambiguous and if so is there a better word?

Would you use "llamarse" for an animal's name?

Voltage Balun 1:1

Why didn't this character get a funeral at the end of Avengers: Endgame?

Are pressure-treated posts that have been submerged for a few days ruined?

Typeset year in old-style numbers with biblatex

As a GM, is it bad form to ask for a moment to think when improvising?

Can muons decay into quarks?

How does the reduce() method work in Java 8?

How can I get a job without pushing my family's income into a higher tax bracket?

Can you use "едать" and "игрывать" in the present and future tenses?

Find magical solution to magical equation



What is the value of $alpha$ and $beta$ in a triangle?


Proof that the angle sum of a triangle is always greater than 180 degrees in elliptic geometryWhat characteristic of the triangle leads the the existence of the orthocenter$sinalpha+sinbeta+singamma>2$ Where $alpha$, $beta$ and $gamma$ are angles from an acute-angled triangle.Show that for triangle ABC, with complex numbers for the coordinates, that we have the following equationProving $cscfracalpha2+cscfracbeta2+cscfracgamma2 ge 6$, where $alpha$, $beta$, $gamma$ are the angles of a trianglePoint in a triangle plane determining any anglesGiven sides and a bisection, find angles in a triangleHow to find triangle height if I know its area and anglesFind angle given two isosceles triangles.Solving for the value of $ angle CEB$ - $frac14$ $angle CBA$ where $E$ is an exterior point of $triangle ABC$













3












$begingroup$


On triangle $ABC$, with angles $alpha$ over $A$, $beta$ over $B$, and $gamma$ over $C$. Where $gamma$ is $140^circ$.



On $overlineAB$ lies point $D$ (different from $A$ and $B$).



On $overlineAC$ lies point $E$ (different from $A$ and $C$).



$overlineAE$, $overlineED$, $overlineDC$, $overlineCB$ are of same length.



What is the value of α and β?



EDIT: Here's my "solution", however the sum of the angles is greater than $180^circ$.



enter image description here










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What have you done? Have you, for instance, drawn this thing?
    $endgroup$
    – Arthur
    Mar 30 at 17:16






  • 1




    $begingroup$
    I had some solution where α and β were both 40° which was nonsense for me. Will do some drawing for better imagination.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:18







  • 3




    $begingroup$
    Your drawing is hopelessly inaccurate. For example, $x$ (which should be $alpha$, by the way) seems to range from $40^circ$ to $110^circ$. Surely you can do better than that?
    $endgroup$
    – TonyK
    Mar 30 at 17:38











  • $begingroup$
    If $x+y neq 180$, points $A$, $E$, and $C$ are not collinear.
    $endgroup$
    – MackTuesday
    Mar 30 at 21:59










  • $begingroup$
    It then follows that $AECB$ is a quadrilateral, not a triangle. It turns out $y = 0$. It all stems from the fact that $ED = CD$.
    $endgroup$
    – MackTuesday
    Mar 30 at 22:08
















3












$begingroup$


On triangle $ABC$, with angles $alpha$ over $A$, $beta$ over $B$, and $gamma$ over $C$. Where $gamma$ is $140^circ$.



On $overlineAB$ lies point $D$ (different from $A$ and $B$).



On $overlineAC$ lies point $E$ (different from $A$ and $C$).



$overlineAE$, $overlineED$, $overlineDC$, $overlineCB$ are of same length.



What is the value of α and β?



EDIT: Here's my "solution", however the sum of the angles is greater than $180^circ$.



enter image description here










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What have you done? Have you, for instance, drawn this thing?
    $endgroup$
    – Arthur
    Mar 30 at 17:16






  • 1




    $begingroup$
    I had some solution where α and β were both 40° which was nonsense for me. Will do some drawing for better imagination.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:18







  • 3




    $begingroup$
    Your drawing is hopelessly inaccurate. For example, $x$ (which should be $alpha$, by the way) seems to range from $40^circ$ to $110^circ$. Surely you can do better than that?
    $endgroup$
    – TonyK
    Mar 30 at 17:38











  • $begingroup$
    If $x+y neq 180$, points $A$, $E$, and $C$ are not collinear.
    $endgroup$
    – MackTuesday
    Mar 30 at 21:59










  • $begingroup$
    It then follows that $AECB$ is a quadrilateral, not a triangle. It turns out $y = 0$. It all stems from the fact that $ED = CD$.
    $endgroup$
    – MackTuesday
    Mar 30 at 22:08














3












3








3


1



$begingroup$


On triangle $ABC$, with angles $alpha$ over $A$, $beta$ over $B$, and $gamma$ over $C$. Where $gamma$ is $140^circ$.



On $overlineAB$ lies point $D$ (different from $A$ and $B$).



On $overlineAC$ lies point $E$ (different from $A$ and $C$).



$overlineAE$, $overlineED$, $overlineDC$, $overlineCB$ are of same length.



What is the value of α and β?



EDIT: Here's my "solution", however the sum of the angles is greater than $180^circ$.



enter image description here










share|cite|improve this question











$endgroup$




On triangle $ABC$, with angles $alpha$ over $A$, $beta$ over $B$, and $gamma$ over $C$. Where $gamma$ is $140^circ$.



On $overlineAB$ lies point $D$ (different from $A$ and $B$).



On $overlineAC$ lies point $E$ (different from $A$ and $C$).



$overlineAE$, $overlineED$, $overlineDC$, $overlineCB$ are of same length.



What is the value of α and β?



EDIT: Here's my "solution", however the sum of the angles is greater than $180^circ$.



enter image description here







geometry triangles






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 31 at 2:08









Rócherz

3,0363823




3,0363823










asked Mar 30 at 17:13









Peter ParadaPeter Parada

1559




1559







  • 1




    $begingroup$
    What have you done? Have you, for instance, drawn this thing?
    $endgroup$
    – Arthur
    Mar 30 at 17:16






  • 1




    $begingroup$
    I had some solution where α and β were both 40° which was nonsense for me. Will do some drawing for better imagination.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:18







  • 3




    $begingroup$
    Your drawing is hopelessly inaccurate. For example, $x$ (which should be $alpha$, by the way) seems to range from $40^circ$ to $110^circ$. Surely you can do better than that?
    $endgroup$
    – TonyK
    Mar 30 at 17:38











  • $begingroup$
    If $x+y neq 180$, points $A$, $E$, and $C$ are not collinear.
    $endgroup$
    – MackTuesday
    Mar 30 at 21:59










  • $begingroup$
    It then follows that $AECB$ is a quadrilateral, not a triangle. It turns out $y = 0$. It all stems from the fact that $ED = CD$.
    $endgroup$
    – MackTuesday
    Mar 30 at 22:08













  • 1




    $begingroup$
    What have you done? Have you, for instance, drawn this thing?
    $endgroup$
    – Arthur
    Mar 30 at 17:16






  • 1




    $begingroup$
    I had some solution where α and β were both 40° which was nonsense for me. Will do some drawing for better imagination.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:18







  • 3




    $begingroup$
    Your drawing is hopelessly inaccurate. For example, $x$ (which should be $alpha$, by the way) seems to range from $40^circ$ to $110^circ$. Surely you can do better than that?
    $endgroup$
    – TonyK
    Mar 30 at 17:38











  • $begingroup$
    If $x+y neq 180$, points $A$, $E$, and $C$ are not collinear.
    $endgroup$
    – MackTuesday
    Mar 30 at 21:59










  • $begingroup$
    It then follows that $AECB$ is a quadrilateral, not a triangle. It turns out $y = 0$. It all stems from the fact that $ED = CD$.
    $endgroup$
    – MackTuesday
    Mar 30 at 22:08








1




1




$begingroup$
What have you done? Have you, for instance, drawn this thing?
$endgroup$
– Arthur
Mar 30 at 17:16




$begingroup$
What have you done? Have you, for instance, drawn this thing?
$endgroup$
– Arthur
Mar 30 at 17:16




1




1




$begingroup$
I had some solution where α and β were both 40° which was nonsense for me. Will do some drawing for better imagination.
$endgroup$
– Peter Parada
Mar 30 at 17:18





$begingroup$
I had some solution where α and β were both 40° which was nonsense for me. Will do some drawing for better imagination.
$endgroup$
– Peter Parada
Mar 30 at 17:18





3




3




$begingroup$
Your drawing is hopelessly inaccurate. For example, $x$ (which should be $alpha$, by the way) seems to range from $40^circ$ to $110^circ$. Surely you can do better than that?
$endgroup$
– TonyK
Mar 30 at 17:38





$begingroup$
Your drawing is hopelessly inaccurate. For example, $x$ (which should be $alpha$, by the way) seems to range from $40^circ$ to $110^circ$. Surely you can do better than that?
$endgroup$
– TonyK
Mar 30 at 17:38













$begingroup$
If $x+y neq 180$, points $A$, $E$, and $C$ are not collinear.
$endgroup$
– MackTuesday
Mar 30 at 21:59




$begingroup$
If $x+y neq 180$, points $A$, $E$, and $C$ are not collinear.
$endgroup$
– MackTuesday
Mar 30 at 21:59












$begingroup$
It then follows that $AECB$ is a quadrilateral, not a triangle. It turns out $y = 0$. It all stems from the fact that $ED = CD$.
$endgroup$
– MackTuesday
Mar 30 at 22:08





$begingroup$
It then follows that $AECB$ is a quadrilateral, not a triangle. It turns out $y = 0$. It all stems from the fact that $ED = CD$.
$endgroup$
– MackTuesday
Mar 30 at 22:08











2 Answers
2






active

oldest

votes


















5












$begingroup$

I drew a simple diagram from which one can deduce that
$$alpha=10^circ$$
$$beta=40^circ-alpha=30^circ$$
by noticing that angle $DEC=2alpha$ and hence angle $DCB=140^circ-2alpha$ giving the value of the angle $DBC=20^circ+alpha$. But as angle $DBC$ is equal to angle $ABC$ we get that
$$40^circ-alpha=20^circ+alphaimplies alpha=10^circ$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice.......[+1]
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39










  • $begingroup$
    @peter-foreman How have you deduced that DEC is 2𝛼?
    $endgroup$
    – Peter Parada
    Mar 30 at 17:45






  • 1




    $begingroup$
    $ADE=alpha$ due to the isosceles triangle formed. $AED=180^circ-2alpha$ as angles in a triangle add to $180^circ$. $DEC=180^circ-AED=2alpha$ as a straight line contains $180^circ$.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:53










  • $begingroup$
    Thank you. Very nice!
    $endgroup$
    – Peter Parada
    Mar 30 at 17:58


















3












$begingroup$

The problem is that you've assumed that two isosceles triangles with the same legs will have the same basis-angles...





And $$angle ACBnot= angle DCA$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Not sure if we are on the same page, but I am assuming exacly that. If 2 sides are equal, then 2 angles in triangle are also equal. - "The two angles opposite the legs are equal and are always acute" - en.wikipedia.org/wiki/Isosceles_triangle
    $endgroup$
    – Peter Parada
    Mar 30 at 17:35







  • 1




    $begingroup$
    No what he means is that all of the triangles in your diagram have different valued base angles - they are not all simply $x$. Just because two side lengths are the same does not imply all angles of a triangle are the same.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:38











  • $begingroup$
    Exactly @PeterForeman!
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39






  • 1




    $begingroup$
    Ok. Got it. Thanks for the picture.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:40











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168540%2fwhat-is-the-value-of-alpha-and-beta-in-a-triangle%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

I drew a simple diagram from which one can deduce that
$$alpha=10^circ$$
$$beta=40^circ-alpha=30^circ$$
by noticing that angle $DEC=2alpha$ and hence angle $DCB=140^circ-2alpha$ giving the value of the angle $DBC=20^circ+alpha$. But as angle $DBC$ is equal to angle $ABC$ we get that
$$40^circ-alpha=20^circ+alphaimplies alpha=10^circ$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice.......[+1]
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39










  • $begingroup$
    @peter-foreman How have you deduced that DEC is 2𝛼?
    $endgroup$
    – Peter Parada
    Mar 30 at 17:45






  • 1




    $begingroup$
    $ADE=alpha$ due to the isosceles triangle formed. $AED=180^circ-2alpha$ as angles in a triangle add to $180^circ$. $DEC=180^circ-AED=2alpha$ as a straight line contains $180^circ$.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:53










  • $begingroup$
    Thank you. Very nice!
    $endgroup$
    – Peter Parada
    Mar 30 at 17:58















5












$begingroup$

I drew a simple diagram from which one can deduce that
$$alpha=10^circ$$
$$beta=40^circ-alpha=30^circ$$
by noticing that angle $DEC=2alpha$ and hence angle $DCB=140^circ-2alpha$ giving the value of the angle $DBC=20^circ+alpha$. But as angle $DBC$ is equal to angle $ABC$ we get that
$$40^circ-alpha=20^circ+alphaimplies alpha=10^circ$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice.......[+1]
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39










  • $begingroup$
    @peter-foreman How have you deduced that DEC is 2𝛼?
    $endgroup$
    – Peter Parada
    Mar 30 at 17:45






  • 1




    $begingroup$
    $ADE=alpha$ due to the isosceles triangle formed. $AED=180^circ-2alpha$ as angles in a triangle add to $180^circ$. $DEC=180^circ-AED=2alpha$ as a straight line contains $180^circ$.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:53










  • $begingroup$
    Thank you. Very nice!
    $endgroup$
    – Peter Parada
    Mar 30 at 17:58













5












5








5





$begingroup$

I drew a simple diagram from which one can deduce that
$$alpha=10^circ$$
$$beta=40^circ-alpha=30^circ$$
by noticing that angle $DEC=2alpha$ and hence angle $DCB=140^circ-2alpha$ giving the value of the angle $DBC=20^circ+alpha$. But as angle $DBC$ is equal to angle $ABC$ we get that
$$40^circ-alpha=20^circ+alphaimplies alpha=10^circ$$






share|cite|improve this answer









$endgroup$



I drew a simple diagram from which one can deduce that
$$alpha=10^circ$$
$$beta=40^circ-alpha=30^circ$$
by noticing that angle $DEC=2alpha$ and hence angle $DCB=140^circ-2alpha$ giving the value of the angle $DBC=20^circ+alpha$. But as angle $DBC$ is equal to angle $ABC$ we get that
$$40^circ-alpha=20^circ+alphaimplies alpha=10^circ$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 30 at 17:32









Peter ForemanPeter Foreman

9,2111321




9,2111321











  • $begingroup$
    Nice.......[+1]
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39










  • $begingroup$
    @peter-foreman How have you deduced that DEC is 2𝛼?
    $endgroup$
    – Peter Parada
    Mar 30 at 17:45






  • 1




    $begingroup$
    $ADE=alpha$ due to the isosceles triangle formed. $AED=180^circ-2alpha$ as angles in a triangle add to $180^circ$. $DEC=180^circ-AED=2alpha$ as a straight line contains $180^circ$.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:53










  • $begingroup$
    Thank you. Very nice!
    $endgroup$
    – Peter Parada
    Mar 30 at 17:58
















  • $begingroup$
    Nice.......[+1]
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39










  • $begingroup$
    @peter-foreman How have you deduced that DEC is 2𝛼?
    $endgroup$
    – Peter Parada
    Mar 30 at 17:45






  • 1




    $begingroup$
    $ADE=alpha$ due to the isosceles triangle formed. $AED=180^circ-2alpha$ as angles in a triangle add to $180^circ$. $DEC=180^circ-AED=2alpha$ as a straight line contains $180^circ$.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:53










  • $begingroup$
    Thank you. Very nice!
    $endgroup$
    – Peter Parada
    Mar 30 at 17:58















$begingroup$
Nice.......[+1]
$endgroup$
– Dr. Mathva
Mar 30 at 17:39




$begingroup$
Nice.......[+1]
$endgroup$
– Dr. Mathva
Mar 30 at 17:39












$begingroup$
@peter-foreman How have you deduced that DEC is 2𝛼?
$endgroup$
– Peter Parada
Mar 30 at 17:45




$begingroup$
@peter-foreman How have you deduced that DEC is 2𝛼?
$endgroup$
– Peter Parada
Mar 30 at 17:45




1




1




$begingroup$
$ADE=alpha$ due to the isosceles triangle formed. $AED=180^circ-2alpha$ as angles in a triangle add to $180^circ$. $DEC=180^circ-AED=2alpha$ as a straight line contains $180^circ$.
$endgroup$
– Peter Foreman
Mar 30 at 17:53




$begingroup$
$ADE=alpha$ due to the isosceles triangle formed. $AED=180^circ-2alpha$ as angles in a triangle add to $180^circ$. $DEC=180^circ-AED=2alpha$ as a straight line contains $180^circ$.
$endgroup$
– Peter Foreman
Mar 30 at 17:53












$begingroup$
Thank you. Very nice!
$endgroup$
– Peter Parada
Mar 30 at 17:58




$begingroup$
Thank you. Very nice!
$endgroup$
– Peter Parada
Mar 30 at 17:58











3












$begingroup$

The problem is that you've assumed that two isosceles triangles with the same legs will have the same basis-angles...





And $$angle ACBnot= angle DCA$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Not sure if we are on the same page, but I am assuming exacly that. If 2 sides are equal, then 2 angles in triangle are also equal. - "The two angles opposite the legs are equal and are always acute" - en.wikipedia.org/wiki/Isosceles_triangle
    $endgroup$
    – Peter Parada
    Mar 30 at 17:35







  • 1




    $begingroup$
    No what he means is that all of the triangles in your diagram have different valued base angles - they are not all simply $x$. Just because two side lengths are the same does not imply all angles of a triangle are the same.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:38











  • $begingroup$
    Exactly @PeterForeman!
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39






  • 1




    $begingroup$
    Ok. Got it. Thanks for the picture.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:40















3












$begingroup$

The problem is that you've assumed that two isosceles triangles with the same legs will have the same basis-angles...





And $$angle ACBnot= angle DCA$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Not sure if we are on the same page, but I am assuming exacly that. If 2 sides are equal, then 2 angles in triangle are also equal. - "The two angles opposite the legs are equal and are always acute" - en.wikipedia.org/wiki/Isosceles_triangle
    $endgroup$
    – Peter Parada
    Mar 30 at 17:35







  • 1




    $begingroup$
    No what he means is that all of the triangles in your diagram have different valued base angles - they are not all simply $x$. Just because two side lengths are the same does not imply all angles of a triangle are the same.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:38











  • $begingroup$
    Exactly @PeterForeman!
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39






  • 1




    $begingroup$
    Ok. Got it. Thanks for the picture.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:40













3












3








3





$begingroup$

The problem is that you've assumed that two isosceles triangles with the same legs will have the same basis-angles...





And $$angle ACBnot= angle DCA$$






share|cite|improve this answer











$endgroup$



The problem is that you've assumed that two isosceles triangles with the same legs will have the same basis-angles...





And $$angle ACBnot= angle DCA$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 30 at 17:39

























answered Mar 30 at 17:32









Dr. MathvaDr. Mathva

4,0641731




4,0641731











  • $begingroup$
    Not sure if we are on the same page, but I am assuming exacly that. If 2 sides are equal, then 2 angles in triangle are also equal. - "The two angles opposite the legs are equal and are always acute" - en.wikipedia.org/wiki/Isosceles_triangle
    $endgroup$
    – Peter Parada
    Mar 30 at 17:35







  • 1




    $begingroup$
    No what he means is that all of the triangles in your diagram have different valued base angles - they are not all simply $x$. Just because two side lengths are the same does not imply all angles of a triangle are the same.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:38











  • $begingroup$
    Exactly @PeterForeman!
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39






  • 1




    $begingroup$
    Ok. Got it. Thanks for the picture.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:40
















  • $begingroup$
    Not sure if we are on the same page, but I am assuming exacly that. If 2 sides are equal, then 2 angles in triangle are also equal. - "The two angles opposite the legs are equal and are always acute" - en.wikipedia.org/wiki/Isosceles_triangle
    $endgroup$
    – Peter Parada
    Mar 30 at 17:35







  • 1




    $begingroup$
    No what he means is that all of the triangles in your diagram have different valued base angles - they are not all simply $x$. Just because two side lengths are the same does not imply all angles of a triangle are the same.
    $endgroup$
    – Peter Foreman
    Mar 30 at 17:38











  • $begingroup$
    Exactly @PeterForeman!
    $endgroup$
    – Dr. Mathva
    Mar 30 at 17:39






  • 1




    $begingroup$
    Ok. Got it. Thanks for the picture.
    $endgroup$
    – Peter Parada
    Mar 30 at 17:40















$begingroup$
Not sure if we are on the same page, but I am assuming exacly that. If 2 sides are equal, then 2 angles in triangle are also equal. - "The two angles opposite the legs are equal and are always acute" - en.wikipedia.org/wiki/Isosceles_triangle
$endgroup$
– Peter Parada
Mar 30 at 17:35





$begingroup$
Not sure if we are on the same page, but I am assuming exacly that. If 2 sides are equal, then 2 angles in triangle are also equal. - "The two angles opposite the legs are equal and are always acute" - en.wikipedia.org/wiki/Isosceles_triangle
$endgroup$
– Peter Parada
Mar 30 at 17:35





1




1




$begingroup$
No what he means is that all of the triangles in your diagram have different valued base angles - they are not all simply $x$. Just because two side lengths are the same does not imply all angles of a triangle are the same.
$endgroup$
– Peter Foreman
Mar 30 at 17:38





$begingroup$
No what he means is that all of the triangles in your diagram have different valued base angles - they are not all simply $x$. Just because two side lengths are the same does not imply all angles of a triangle are the same.
$endgroup$
– Peter Foreman
Mar 30 at 17:38













$begingroup$
Exactly @PeterForeman!
$endgroup$
– Dr. Mathva
Mar 30 at 17:39




$begingroup$
Exactly @PeterForeman!
$endgroup$
– Dr. Mathva
Mar 30 at 17:39




1




1




$begingroup$
Ok. Got it. Thanks for the picture.
$endgroup$
– Peter Parada
Mar 30 at 17:40




$begingroup$
Ok. Got it. Thanks for the picture.
$endgroup$
– Peter Parada
Mar 30 at 17:40

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168540%2fwhat-is-the-value-of-alpha-and-beta-in-a-triangle%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

Bunad

Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum