Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?Difference between $partial$ and $nabla$ in general relativityMetric tensor in special and general relativityGeneral relativity from helicity 2 massless field theory by using Deser's argumentsProblem in General Relativity (metric tensor covariant derivative / indexes)Motivation for covariant derivative axioms in the context of General RelativityWhat is the motivation from Physics for the Levi-Civita connection on GR?Regarding $T^munu;_mu=0$ in general relativityOn covariant derivativeChristoffel symbol derivation in book by WaldWhen can we raise lower indices on “nontensors” as described in Dirac's book *General Theory of Relativity*?

Mug and wireframe entirely disappeared

Typeset year in old-style numbers with biblatex

Should I decline this job offer that requires relocating to an area with high cost of living?

Has the Hulk always been able to talk?

Prove that a definite integral is an infinite sum

Is it normal for gliders not to have attitude indicators?

Hostile Divisor Numbers

To kill a cuckoo

Nested loops to process groups of pictures

Salt turned peas from creamy to crunchy

How can internet speed be 10 times slower without a router than when using a router?

Would a small hole in a Faraday cage drastically reduce its effectiveness at blocking interference?

Should homeowners insurance cover the cost of the home?

ip rule and route doesn't get respected

How should I tell my manager I'm not paying for an optional after work event I'm not going to?

Is there a word that describes the unjustified use of a more complex word?

Would you use "llamarse" for an animal's name?

Voltage Balun 1:1

Using Im[] and Re[] Correctly

Are pressure-treated posts that have been submerged for a few days ruined?

Is an HNN extension of a virtually torsion-free group virtually torsion-free?

Notation: What does the tilde bellow of the Expectation mean?

When an imagined world resembles or has similarities with a famous world

3D Volume in TIKZ



Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?


Difference between $partial$ and $nabla$ in general relativityMetric tensor in special and general relativityGeneral relativity from helicity 2 massless field theory by using Deser's argumentsProblem in General Relativity (metric tensor covariant derivative / indexes)Motivation for covariant derivative axioms in the context of General RelativityWhat is the motivation from Physics for the Levi-Civita connection on GR?Regarding $T^munu;_mu=0$ in general relativityOn covariant derivativeChristoffel symbol derivation in book by WaldWhen can we raise lower indices on “nontensors” as described in Dirac's book *General Theory of Relativity*?













14












$begingroup$


I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?










share|cite|improve this question











$endgroup$
















    14












    $begingroup$


    I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



    I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?










    share|cite|improve this question











    $endgroup$














      14












      14








      14


      2



      $begingroup$


      I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



      I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?










      share|cite|improve this question











      $endgroup$




      I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



      I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?







      general-relativity special-relativity differential-geometry tensor-calculus differentiation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 30 at 15:08









      Ben Crowell

      55.4k6165318




      55.4k6165318










      asked Mar 30 at 11:36









      Toby PeterkenToby Peterken

      459216




      459216




















          3 Answers
          3






          active

          oldest

          votes


















          14












          $begingroup$

          Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



          For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



          $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



          whereas in Minkowski the same equation reads:



          $$partial_nu partial^nu A^mu = -j^mu$$



          If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






          share|cite|improve this answer











          $endgroup$




















            6












            $begingroup$

            You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



            There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






            share|cite|improve this answer









            $endgroup$




















              1












              $begingroup$


              I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




              Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



              Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



              But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






              share|cite|improve this answer









              $endgroup$













                Your Answer








                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "151"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: false,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: null,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469527%2fwhy-when-going-from-special-to-general-relativity-do-we-just-replace-partial-d%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                14












                $begingroup$

                Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                whereas in Minkowski the same equation reads:



                $$partial_nu partial^nu A^mu = -j^mu$$



                If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






                share|cite|improve this answer











                $endgroup$

















                  14












                  $begingroup$

                  Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                  For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                  $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                  whereas in Minkowski the same equation reads:



                  $$partial_nu partial^nu A^mu = -j^mu$$



                  If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






                  share|cite|improve this answer











                  $endgroup$















                    14












                    14








                    14





                    $begingroup$

                    Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                    For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                    $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                    whereas in Minkowski the same equation reads:



                    $$partial_nu partial^nu A^mu = -j^mu$$



                    If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






                    share|cite|improve this answer











                    $endgroup$



                    Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                    For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                    $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                    whereas in Minkowski the same equation reads:



                    $$partial_nu partial^nu A^mu = -j^mu$$



                    If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Mar 30 at 12:35









                    DanielC

                    1,7301920




                    1,7301920










                    answered Mar 30 at 12:15









                    Filipe MiguelFilipe Miguel

                    392213




                    392213





















                        6












                        $begingroup$

                        You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                        There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






                        share|cite|improve this answer









                        $endgroup$

















                          6












                          $begingroup$

                          You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                          There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






                          share|cite|improve this answer









                          $endgroup$















                            6












                            6








                            6





                            $begingroup$

                            You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                            There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






                            share|cite|improve this answer









                            $endgroup$



                            You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                            There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 30 at 12:27









                            gmaroccogmarocco

                            1466




                            1466





















                                1












                                $begingroup$


                                I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






                                share|cite|improve this answer









                                $endgroup$

















                                  1












                                  $begingroup$


                                  I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                  Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                  Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                  But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






                                  share|cite|improve this answer









                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$


                                    I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                    Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                    Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                    But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






                                    share|cite|improve this answer









                                    $endgroup$




                                    I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                    Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                    Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                    But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 30 at 20:44









                                    Elio FabriElio Fabri

                                    3,9861214




                                    3,9861214



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Physics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469527%2fwhy-when-going-from-special-to-general-relativity-do-we-just-replace-partial-d%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                                        He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                                        Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029