Why does the degree of dissociation change when we dilute a weak acid even though the equilibrium constant $K$ is constant?How do I calculate the degree of dissociation in equilibrium?Does the number of H+ ions in solution go up on dilution of a weak acid?Zwitterion (amino acid) equilibrium and the equilibrium constantProve that a Change of Volume will not Change the Value of the Equilibrium ConstantWhat is the effect of dilution on the degree of dissociation of a weak acid or base?Is it true that un-dissociated HCl exists in dilute hydrochloric acid?Why is the hydrolysis of the conjugate base of a weak acid neglected in buffer solutions?Do weak acid/weak base neutralisation reactions go to completion?How to calculate the percentage dissociation of phosgene using the pressure equilibrium constant?Which rate, the forward or reverse rate of acid dissociation, is more strongly affected when diluting acetic acid in aqueous solution?

Checking @@ROWCOUNT failing

What is the meaning of "You've never met a graph you didn't like?"

Derivative of an interpolated function

Do I have to take mana from my deck or hand when tapping this card?

Can you take a "free object interaction" while incapacitated?

How do I lift the insulation blower into the attic?

How to split IPA spelling into syllables

Mac Mini (2018) 10Gb Port Compatibility

Why doesn't Gödel's incompleteness theorem apply to false statements?

A seasonal riddle

I keep switching characters, how do I stop?

What 1968 Moog synthesizer was used in the Movie Apollo 11?

What is the period/term used describe Giuseppe Arcimboldo's style of painting?

Highest stage count that are used one right after the other?

Is there a distance limit for minecart tracks?

1 John in Luther’s Bibel

PTIJ: Which Dr. Seuss books should one obtain?

Started in 1987 vs. Starting in 1987

Is this saw blade faulty?

Pre-Employment Background Check With Consent For Future Checks

Sort with assumptions

Mortal danger in mid-grade literature

Why didn’t Eve recognize the little cockroach as a living organism?

Connection Between Knot Theory and Number Theory



Why does the degree of dissociation change when we dilute a weak acid even though the equilibrium constant $K$ is constant?


How do I calculate the degree of dissociation in equilibrium?Does the number of H+ ions in solution go up on dilution of a weak acid?Zwitterion (amino acid) equilibrium and the equilibrium constantProve that a Change of Volume will not Change the Value of the Equilibrium ConstantWhat is the effect of dilution on the degree of dissociation of a weak acid or base?Is it true that un-dissociated HCl exists in dilute hydrochloric acid?Why is the hydrolysis of the conjugate base of a weak acid neglected in buffer solutions?Do weak acid/weak base neutralisation reactions go to completion?How to calculate the percentage dissociation of phosgene using the pressure equilibrium constant?Which rate, the forward or reverse rate of acid dissociation, is more strongly affected when diluting acetic acid in aqueous solution?













4












$begingroup$


$K$ represents the ratio of concentrations of molecules in a solution at equilibrium, which means that $Q_mathrmr$ (that ratio at any given point) looks to be identical to $K$. In other words, the molecules in that solution react accordingly so that they reach equilibrium and the ratio of their concentrations is equal to $K$.



If $K$ is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero. In other words, the equilibrium position of that solution looks very much like a reaction that went to completion.



The more we dilute an acidic/basic solution, the higher the degree of dissociation, even though $K$ stays the same. So, does that mean that the more we dilute a solution the harder it is for it to reach the point of equilibrium for that specific molecule/solution or what?



For instance, say you found $K$ of solution to be $10^-5$. This means that when the reaction happens there are lots of reactants left, and not much products produced, which means that the degree of dissociation is low. But the more we dilute a solution, the closer it gets to a "complete reaction" (if you pour a small amount of weak-acid molecules into a large tank of water, it's certain that all of the weak-acid molecules are going to react with the water, i.e. the degree of dissociation approaches $100%$).



So, how come $K$ can be independent of the initial reactants concentrations, and tell if a reaction was complete or not, when the "completion" of a reaction (the degree of dissociation) depends on the initial concentrations of reactants?










share|improve this question









New contributor




Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    These two videos might help : khanacademy.org/science/chemistry/thermodynamics-chemistry/… ; khanacademy.org/science/chemistry/thermodynamics-chemistry/… . It's down to the chemical potential. Two systems with different concentrations of reactants and products may both be at equilibrium, there is nothing contradictory about that. The equilibrium constant tells you how to identify such systems.
    $endgroup$
    – user6376297
    2 days ago















4












$begingroup$


$K$ represents the ratio of concentrations of molecules in a solution at equilibrium, which means that $Q_mathrmr$ (that ratio at any given point) looks to be identical to $K$. In other words, the molecules in that solution react accordingly so that they reach equilibrium and the ratio of their concentrations is equal to $K$.



If $K$ is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero. In other words, the equilibrium position of that solution looks very much like a reaction that went to completion.



The more we dilute an acidic/basic solution, the higher the degree of dissociation, even though $K$ stays the same. So, does that mean that the more we dilute a solution the harder it is for it to reach the point of equilibrium for that specific molecule/solution or what?



For instance, say you found $K$ of solution to be $10^-5$. This means that when the reaction happens there are lots of reactants left, and not much products produced, which means that the degree of dissociation is low. But the more we dilute a solution, the closer it gets to a "complete reaction" (if you pour a small amount of weak-acid molecules into a large tank of water, it's certain that all of the weak-acid molecules are going to react with the water, i.e. the degree of dissociation approaches $100%$).



So, how come $K$ can be independent of the initial reactants concentrations, and tell if a reaction was complete or not, when the "completion" of a reaction (the degree of dissociation) depends on the initial concentrations of reactants?










share|improve this question









New contributor




Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    These two videos might help : khanacademy.org/science/chemistry/thermodynamics-chemistry/… ; khanacademy.org/science/chemistry/thermodynamics-chemistry/… . It's down to the chemical potential. Two systems with different concentrations of reactants and products may both be at equilibrium, there is nothing contradictory about that. The equilibrium constant tells you how to identify such systems.
    $endgroup$
    – user6376297
    2 days ago













4












4








4





$begingroup$


$K$ represents the ratio of concentrations of molecules in a solution at equilibrium, which means that $Q_mathrmr$ (that ratio at any given point) looks to be identical to $K$. In other words, the molecules in that solution react accordingly so that they reach equilibrium and the ratio of their concentrations is equal to $K$.



If $K$ is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero. In other words, the equilibrium position of that solution looks very much like a reaction that went to completion.



The more we dilute an acidic/basic solution, the higher the degree of dissociation, even though $K$ stays the same. So, does that mean that the more we dilute a solution the harder it is for it to reach the point of equilibrium for that specific molecule/solution or what?



For instance, say you found $K$ of solution to be $10^-5$. This means that when the reaction happens there are lots of reactants left, and not much products produced, which means that the degree of dissociation is low. But the more we dilute a solution, the closer it gets to a "complete reaction" (if you pour a small amount of weak-acid molecules into a large tank of water, it's certain that all of the weak-acid molecules are going to react with the water, i.e. the degree of dissociation approaches $100%$).



So, how come $K$ can be independent of the initial reactants concentrations, and tell if a reaction was complete or not, when the "completion" of a reaction (the degree of dissociation) depends on the initial concentrations of reactants?










share|improve this question









New contributor




Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




$K$ represents the ratio of concentrations of molecules in a solution at equilibrium, which means that $Q_mathrmr$ (that ratio at any given point) looks to be identical to $K$. In other words, the molecules in that solution react accordingly so that they reach equilibrium and the ratio of their concentrations is equal to $K$.



If $K$ is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero. In other words, the equilibrium position of that solution looks very much like a reaction that went to completion.



The more we dilute an acidic/basic solution, the higher the degree of dissociation, even though $K$ stays the same. So, does that mean that the more we dilute a solution the harder it is for it to reach the point of equilibrium for that specific molecule/solution or what?



For instance, say you found $K$ of solution to be $10^-5$. This means that when the reaction happens there are lots of reactants left, and not much products produced, which means that the degree of dissociation is low. But the more we dilute a solution, the closer it gets to a "complete reaction" (if you pour a small amount of weak-acid molecules into a large tank of water, it's certain that all of the weak-acid molecules are going to react with the water, i.e. the degree of dissociation approaches $100%$).



So, how come $K$ can be independent of the initial reactants concentrations, and tell if a reaction was complete or not, when the "completion" of a reaction (the degree of dissociation) depends on the initial concentrations of reactants?







physical-chemistry acid-base equilibrium solutions






share|improve this question









New contributor




Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 2 days ago









TheSimpliFire

204110




204110






New contributor




Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Elhamer YacineElhamer Yacine

234




234




New contributor




Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Elhamer Yacine is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    These two videos might help : khanacademy.org/science/chemistry/thermodynamics-chemistry/… ; khanacademy.org/science/chemistry/thermodynamics-chemistry/… . It's down to the chemical potential. Two systems with different concentrations of reactants and products may both be at equilibrium, there is nothing contradictory about that. The equilibrium constant tells you how to identify such systems.
    $endgroup$
    – user6376297
    2 days ago












  • 1




    $begingroup$
    These two videos might help : khanacademy.org/science/chemistry/thermodynamics-chemistry/… ; khanacademy.org/science/chemistry/thermodynamics-chemistry/… . It's down to the chemical potential. Two systems with different concentrations of reactants and products may both be at equilibrium, there is nothing contradictory about that. The equilibrium constant tells you how to identify such systems.
    $endgroup$
    – user6376297
    2 days ago







1




1




$begingroup$
These two videos might help : khanacademy.org/science/chemistry/thermodynamics-chemistry/… ; khanacademy.org/science/chemistry/thermodynamics-chemistry/… . It's down to the chemical potential. Two systems with different concentrations of reactants and products may both be at equilibrium, there is nothing contradictory about that. The equilibrium constant tells you how to identify such systems.
$endgroup$
– user6376297
2 days ago




$begingroup$
These two videos might help : khanacademy.org/science/chemistry/thermodynamics-chemistry/… ; khanacademy.org/science/chemistry/thermodynamics-chemistry/… . It's down to the chemical potential. Two systems with different concentrations of reactants and products may both be at equilibrium, there is nothing contradictory about that. The equilibrium constant tells you how to identify such systems.
$endgroup$
– user6376297
2 days ago










4 Answers
4






active

oldest

votes


















3












$begingroup$


If K is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero.




This statement is not always true - it depends on the stoichiometry of the reaction.



For the reaction $$ceA(aq) <=> B(aq)$$



the concentration of A is much smaller (ten thousand times) than that of B if $K = 10^4$, and this is independent of diluting the solution. It's fair to say that there is almost no A compared to B.



For the reaction $$ce4A(aq) <=> 4B(aq)$$



the concentration of A is just ten times smaller than that of B if $K = 10^4$, and this is also independent of diluting the solution. However, there is quite a bit of A compared to B, and it is a bit misleading to say the the concentration of A is almost zero.



Both of these reactions had the same number of reactant species as product species (all in the same solution, so all equally affected by dilution).




The more we dilute an acidic/basic solution, the more the reaction is "complete", the more the reactants disappear, but K stays the same.




Here, "complete" would mean the absence of reactants, i.e. a reaction that goes to completion. Weak acids are defined by not completely dissociating, in contrast to strong acids. The general reaction for a weak acid is:



$$ceAH(aq) <=> H+(aq) + A-(aq)$$



Notice that there are more product particles than reactant particles. For those type of reactions, dilution favors the products. In fact, if $K = 10^-5$ for this reaction and all concentrations are $pu10^-5 M$, the reaction is at equilibrium. This means even though the equilibrium constant is much smaller than one, you still can have reactants and products at the same concentrations.



On the other hand, if there are more reactant particles than product particles, dilution has the opposite effect. For a complex formation reaction between a metal M and a ligand L



$$ceM(aq) + 4 L(aq) <=> ML4(aq)$$



dilution will cause the complex to fall apart. If $K = 10^4$ and the free ligand concentration is one molar, there will be a lot of complex and very little free metal. On the other hand, if the free ligand concentration is one millimolar (0.001 M), there is hardly any complex and most of the metal will be in the form of the free metal.




Why does the degree of dissociation change when we dilute a weak acid even though the equilibrium constant K is constant?




As the examples above illustrated, this is because for these specific reactions, the sum of exponents for the products is higher than that of the reactants in the equilibrium constant expression. As you dilute, Q will decrease, and the reaction will go forward to reach K again. At infinite dilution, the product will be favored no matter what the value of the equilibrium constant is.



If you want to have a general statement about what the value of K means, it would be something like "as K increases, the equilibrium concentration of products will increase and those of reactants will decrease".






share|improve this answer











$endgroup$




















    6












    $begingroup$

    See my comment above.



    As a numerical example, take acetic acid ($ceAcOH$), which has $K_mathrma = 1.8 cdot 10^-5$.



    This means that:



    $$K_mathrma = frac[ceAcO-][ceH+][ceAcOH]$$



    And the total nominal concentration of acid is:



    $$C_mathrma = [ceAcOH] + [ceAcO-]$$



    Combining these two equations, you can see that the % of dissociated acid is:



    $$alpha = frac[ceAcO-]C_mathrma = fracK_mathrmaK_mathrma + [ceH+]$$



    i.e. not a constant, but a value that depends on the $mathrmpH$. So no, there is no need for the 'degree of completion' of the reaction to be a constant.



    You can even calculate the explicit concentrations of all the species.



    Given that:



    $$C_mathrma = left(frac1[ceH+] + frac1K_mathrmaright) cdot ( [ceH+]^2 - K_mathrmw^2)$$



    you can see that, for $mathrmpH = 5$ you need:



    $$C_mathrma = left(frac110^-5 + frac11.8 cdot 10^-5right) cdot left((10^-5)^2 - (10^-14)^2right) = 1.5554 cdot 10^-5$$



    Then:



    $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] = 5.555 cdot 10^-6$$



    $$[ceAcO-] = C_mathrma - [ceAcOH] = 9.999 cdot 10^-6$$



    So the % of dissociated $ceAcOH$ is:



    $$alpha = frac[ceAcO-]C_mathrma approx 64 %$$



    Now repeat for $mathrmpH = 3$:



    $$C_mathrma = left(frac110^-3 + frac11.8 cdot 10^-5right) cdot left((10^-3)^2 - (10^-14)^2right) approx 0.05656$$



    $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] approx 0.05556$$



    $$[ceAcO-] = C_mathrma - [ceAcOH] approx 0.001$$



    $$alpha = frac[ceAcO-]C_mathrma approx 1.8 %$$



    So you see, in a more dilute mixture the $mathrmpH$ is higher, and the dissociation reaction of acetic acid is 'more complete', whereas at higher concentration the pH is lower, and there is proportionally less acetate anion.



    All of these systems are at equilibrium.






    share|improve this answer











    $endgroup$




















      4












      $begingroup$

      $K$, the equilibrium constant, is independent of the composition of the system. It simply describes the preference of the system for reactants or products.



      On the other hand, there is the reaction quotient, $Q$, which describes the position of the system relative to equilibrium. $Q$ is the value that is variable and that you adjust to be closer to $K$. Technically, $K$ can also be computed from the standard free energy change of the reaction, $Delta G ^circ$.



      What's confusing is the $Q$ and $K$ are computed in the exact same way, with the sole difference that for $Q$, you plug in the values you have right now, and for $K$, you plug in the values at any equilibrium.



      If $Q=K$, you are at equilibrium.



      If $Q < K$, you need to push the reaction towards more products.



      If $Q > K$, you need to push the reaction towards more reactants.



      When you dilute a solution (or make other changes), you may change the value of $Q$, which may put you farther from equilibrium, but the opposite may also be true. It depends on the specific reaction and the form of the equilibrium expression.



      EDIT:



      Your confusion is because you're confusing $Q$ measured at different points in time. At the end of the reaction $t = infty$, $Q = K$. At the beginning of the reaction, $Q_0 < K$. Over time, as the reaction goes towards equilibrium, the value of $Q$ will get closer to $K$. If at the beginning of the reaction, you dilute the solution, you may get a different value of $Q$. If it's smaller, then you have farther to go to get to equilibrium. But again, this depends on the molecularity of the reaction.



      $$ceA + B -> C$$



      $$ceA -> C$$



      $$ceA -> C + D$$



      Here are three different reactions.



      In the first reaction, at the beginning of the reaction, with $Q < K$, dilution pushes you towards equilibrium because reactant concentrations enter into the equilibrium expression twice.



      $$Q = fracce[C]ce[A][B]$$



      If you halve all three concentrations, the value of $Q$ will get bigger.



      In a similar vein, the second equation is unaffected by dilution. In fact, at equilibrium, dilution preserves equilibrium.



      And for reaction 3, dilution pushes you farther away from equilibrium.



      For all three reactions, at the end of the reaction, you will have $Q = K$. But for reactions 1 and 3, dilution at equilibrium changes the value of $Q$ and the reaction will need to adjust again to reach equilibrium.






      share|improve this answer











      $endgroup$












      • $begingroup$
        "You may change the value of Q" the Q at the end of the diluted-solution's reaction? If so, then does that mean that if you dilute a solution to a certain point, Q stops going towards K? Also, If K is small (say smaller than 10⁴), can you dilute a solution to a certain concentration so that it's reaction is complete (α=1)? If not, then how can this saying be explained: "K is only affected by temperature and not the initial concentration of the reactants, while the 'advancement' of a reaction (α) is affected by both temperature and the initial concentration of the reactants"?
        $endgroup$
        – Elhamer Yacine
        2 days ago






      • 1




        $begingroup$
        No, immediately after dilution. $Q$ will be $K$ at the end. You cannot dilute the reaction to completion. But it might get closer or farther depending on coefficients of the balanced reaction. I think you are confusing $K$ and $Q$. The first is constant. The latter is not.
        $endgroup$
        – Zhe
        2 days ago










      • $begingroup$
        Hmm, I think I'm having trouble wrapping my head around how can a diluted-reaction be closer to completion with Q at the end of that reaction still being the same as before
        $endgroup$
        – Elhamer Yacine
        2 days ago











      • $begingroup$
        Let me add an edit. I think that will help.
        $endgroup$
        – Zhe
        2 days ago










      • $begingroup$
        The question is inactive, I doubt anyone will see it, but go ahead
        $endgroup$
        – Elhamer Yacine
        yesterday


















      -1












      $begingroup$

      A really handwavy explanation would be that the system, attempting to maximize its entropy, will prefer dissociated states as the system dilutes since there will be an increasing number of microscopic configurations with atoms $A$ and $B$ far apart (i.e. molecule $AB$ dissociated) as opposed to close together (i.e. atoms $A$ and $B$ bound together into molecule $AB$).






      share|improve this answer








      New contributor




      creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "431"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        Elhamer Yacine is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111112%2fwhy-does-the-degree-of-dissociation-change-when-we-dilute-a-weak-acid-even-thoug%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$


        If K is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero.




        This statement is not always true - it depends on the stoichiometry of the reaction.



        For the reaction $$ceA(aq) <=> B(aq)$$



        the concentration of A is much smaller (ten thousand times) than that of B if $K = 10^4$, and this is independent of diluting the solution. It's fair to say that there is almost no A compared to B.



        For the reaction $$ce4A(aq) <=> 4B(aq)$$



        the concentration of A is just ten times smaller than that of B if $K = 10^4$, and this is also independent of diluting the solution. However, there is quite a bit of A compared to B, and it is a bit misleading to say the the concentration of A is almost zero.



        Both of these reactions had the same number of reactant species as product species (all in the same solution, so all equally affected by dilution).




        The more we dilute an acidic/basic solution, the more the reaction is "complete", the more the reactants disappear, but K stays the same.




        Here, "complete" would mean the absence of reactants, i.e. a reaction that goes to completion. Weak acids are defined by not completely dissociating, in contrast to strong acids. The general reaction for a weak acid is:



        $$ceAH(aq) <=> H+(aq) + A-(aq)$$



        Notice that there are more product particles than reactant particles. For those type of reactions, dilution favors the products. In fact, if $K = 10^-5$ for this reaction and all concentrations are $pu10^-5 M$, the reaction is at equilibrium. This means even though the equilibrium constant is much smaller than one, you still can have reactants and products at the same concentrations.



        On the other hand, if there are more reactant particles than product particles, dilution has the opposite effect. For a complex formation reaction between a metal M and a ligand L



        $$ceM(aq) + 4 L(aq) <=> ML4(aq)$$



        dilution will cause the complex to fall apart. If $K = 10^4$ and the free ligand concentration is one molar, there will be a lot of complex and very little free metal. On the other hand, if the free ligand concentration is one millimolar (0.001 M), there is hardly any complex and most of the metal will be in the form of the free metal.




        Why does the degree of dissociation change when we dilute a weak acid even though the equilibrium constant K is constant?




        As the examples above illustrated, this is because for these specific reactions, the sum of exponents for the products is higher than that of the reactants in the equilibrium constant expression. As you dilute, Q will decrease, and the reaction will go forward to reach K again. At infinite dilution, the product will be favored no matter what the value of the equilibrium constant is.



        If you want to have a general statement about what the value of K means, it would be something like "as K increases, the equilibrium concentration of products will increase and those of reactants will decrease".






        share|improve this answer











        $endgroup$

















          3












          $begingroup$


          If K is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero.




          This statement is not always true - it depends on the stoichiometry of the reaction.



          For the reaction $$ceA(aq) <=> B(aq)$$



          the concentration of A is much smaller (ten thousand times) than that of B if $K = 10^4$, and this is independent of diluting the solution. It's fair to say that there is almost no A compared to B.



          For the reaction $$ce4A(aq) <=> 4B(aq)$$



          the concentration of A is just ten times smaller than that of B if $K = 10^4$, and this is also independent of diluting the solution. However, there is quite a bit of A compared to B, and it is a bit misleading to say the the concentration of A is almost zero.



          Both of these reactions had the same number of reactant species as product species (all in the same solution, so all equally affected by dilution).




          The more we dilute an acidic/basic solution, the more the reaction is "complete", the more the reactants disappear, but K stays the same.




          Here, "complete" would mean the absence of reactants, i.e. a reaction that goes to completion. Weak acids are defined by not completely dissociating, in contrast to strong acids. The general reaction for a weak acid is:



          $$ceAH(aq) <=> H+(aq) + A-(aq)$$



          Notice that there are more product particles than reactant particles. For those type of reactions, dilution favors the products. In fact, if $K = 10^-5$ for this reaction and all concentrations are $pu10^-5 M$, the reaction is at equilibrium. This means even though the equilibrium constant is much smaller than one, you still can have reactants and products at the same concentrations.



          On the other hand, if there are more reactant particles than product particles, dilution has the opposite effect. For a complex formation reaction between a metal M and a ligand L



          $$ceM(aq) + 4 L(aq) <=> ML4(aq)$$



          dilution will cause the complex to fall apart. If $K = 10^4$ and the free ligand concentration is one molar, there will be a lot of complex and very little free metal. On the other hand, if the free ligand concentration is one millimolar (0.001 M), there is hardly any complex and most of the metal will be in the form of the free metal.




          Why does the degree of dissociation change when we dilute a weak acid even though the equilibrium constant K is constant?




          As the examples above illustrated, this is because for these specific reactions, the sum of exponents for the products is higher than that of the reactants in the equilibrium constant expression. As you dilute, Q will decrease, and the reaction will go forward to reach K again. At infinite dilution, the product will be favored no matter what the value of the equilibrium constant is.



          If you want to have a general statement about what the value of K means, it would be something like "as K increases, the equilibrium concentration of products will increase and those of reactants will decrease".






          share|improve this answer











          $endgroup$















            3












            3








            3





            $begingroup$


            If K is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero.




            This statement is not always true - it depends on the stoichiometry of the reaction.



            For the reaction $$ceA(aq) <=> B(aq)$$



            the concentration of A is much smaller (ten thousand times) than that of B if $K = 10^4$, and this is independent of diluting the solution. It's fair to say that there is almost no A compared to B.



            For the reaction $$ce4A(aq) <=> 4B(aq)$$



            the concentration of A is just ten times smaller than that of B if $K = 10^4$, and this is also independent of diluting the solution. However, there is quite a bit of A compared to B, and it is a bit misleading to say the the concentration of A is almost zero.



            Both of these reactions had the same number of reactant species as product species (all in the same solution, so all equally affected by dilution).




            The more we dilute an acidic/basic solution, the more the reaction is "complete", the more the reactants disappear, but K stays the same.




            Here, "complete" would mean the absence of reactants, i.e. a reaction that goes to completion. Weak acids are defined by not completely dissociating, in contrast to strong acids. The general reaction for a weak acid is:



            $$ceAH(aq) <=> H+(aq) + A-(aq)$$



            Notice that there are more product particles than reactant particles. For those type of reactions, dilution favors the products. In fact, if $K = 10^-5$ for this reaction and all concentrations are $pu10^-5 M$, the reaction is at equilibrium. This means even though the equilibrium constant is much smaller than one, you still can have reactants and products at the same concentrations.



            On the other hand, if there are more reactant particles than product particles, dilution has the opposite effect. For a complex formation reaction between a metal M and a ligand L



            $$ceM(aq) + 4 L(aq) <=> ML4(aq)$$



            dilution will cause the complex to fall apart. If $K = 10^4$ and the free ligand concentration is one molar, there will be a lot of complex and very little free metal. On the other hand, if the free ligand concentration is one millimolar (0.001 M), there is hardly any complex and most of the metal will be in the form of the free metal.




            Why does the degree of dissociation change when we dilute a weak acid even though the equilibrium constant K is constant?




            As the examples above illustrated, this is because for these specific reactions, the sum of exponents for the products is higher than that of the reactants in the equilibrium constant expression. As you dilute, Q will decrease, and the reaction will go forward to reach K again. At infinite dilution, the product will be favored no matter what the value of the equilibrium constant is.



            If you want to have a general statement about what the value of K means, it would be something like "as K increases, the equilibrium concentration of products will increase and those of reactants will decrease".






            share|improve this answer











            $endgroup$




            If K is large enough (bigger than $10^4$ in my curriculum), this means that the the concentration of the reactants is almost zero.




            This statement is not always true - it depends on the stoichiometry of the reaction.



            For the reaction $$ceA(aq) <=> B(aq)$$



            the concentration of A is much smaller (ten thousand times) than that of B if $K = 10^4$, and this is independent of diluting the solution. It's fair to say that there is almost no A compared to B.



            For the reaction $$ce4A(aq) <=> 4B(aq)$$



            the concentration of A is just ten times smaller than that of B if $K = 10^4$, and this is also independent of diluting the solution. However, there is quite a bit of A compared to B, and it is a bit misleading to say the the concentration of A is almost zero.



            Both of these reactions had the same number of reactant species as product species (all in the same solution, so all equally affected by dilution).




            The more we dilute an acidic/basic solution, the more the reaction is "complete", the more the reactants disappear, but K stays the same.




            Here, "complete" would mean the absence of reactants, i.e. a reaction that goes to completion. Weak acids are defined by not completely dissociating, in contrast to strong acids. The general reaction for a weak acid is:



            $$ceAH(aq) <=> H+(aq) + A-(aq)$$



            Notice that there are more product particles than reactant particles. For those type of reactions, dilution favors the products. In fact, if $K = 10^-5$ for this reaction and all concentrations are $pu10^-5 M$, the reaction is at equilibrium. This means even though the equilibrium constant is much smaller than one, you still can have reactants and products at the same concentrations.



            On the other hand, if there are more reactant particles than product particles, dilution has the opposite effect. For a complex formation reaction between a metal M and a ligand L



            $$ceM(aq) + 4 L(aq) <=> ML4(aq)$$



            dilution will cause the complex to fall apart. If $K = 10^4$ and the free ligand concentration is one molar, there will be a lot of complex and very little free metal. On the other hand, if the free ligand concentration is one millimolar (0.001 M), there is hardly any complex and most of the metal will be in the form of the free metal.




            Why does the degree of dissociation change when we dilute a weak acid even though the equilibrium constant K is constant?




            As the examples above illustrated, this is because for these specific reactions, the sum of exponents for the products is higher than that of the reactants in the equilibrium constant expression. As you dilute, Q will decrease, and the reaction will go forward to reach K again. At infinite dilution, the product will be favored no matter what the value of the equilibrium constant is.



            If you want to have a general statement about what the value of K means, it would be something like "as K increases, the equilibrium concentration of products will increase and those of reactants will decrease".







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 2 days ago

























            answered 2 days ago









            Karsten TheisKarsten Theis

            3,003537




            3,003537





















                6












                $begingroup$

                See my comment above.



                As a numerical example, take acetic acid ($ceAcOH$), which has $K_mathrma = 1.8 cdot 10^-5$.



                This means that:



                $$K_mathrma = frac[ceAcO-][ceH+][ceAcOH]$$



                And the total nominal concentration of acid is:



                $$C_mathrma = [ceAcOH] + [ceAcO-]$$



                Combining these two equations, you can see that the % of dissociated acid is:



                $$alpha = frac[ceAcO-]C_mathrma = fracK_mathrmaK_mathrma + [ceH+]$$



                i.e. not a constant, but a value that depends on the $mathrmpH$. So no, there is no need for the 'degree of completion' of the reaction to be a constant.



                You can even calculate the explicit concentrations of all the species.



                Given that:



                $$C_mathrma = left(frac1[ceH+] + frac1K_mathrmaright) cdot ( [ceH+]^2 - K_mathrmw^2)$$



                you can see that, for $mathrmpH = 5$ you need:



                $$C_mathrma = left(frac110^-5 + frac11.8 cdot 10^-5right) cdot left((10^-5)^2 - (10^-14)^2right) = 1.5554 cdot 10^-5$$



                Then:



                $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] = 5.555 cdot 10^-6$$



                $$[ceAcO-] = C_mathrma - [ceAcOH] = 9.999 cdot 10^-6$$



                So the % of dissociated $ceAcOH$ is:



                $$alpha = frac[ceAcO-]C_mathrma approx 64 %$$



                Now repeat for $mathrmpH = 3$:



                $$C_mathrma = left(frac110^-3 + frac11.8 cdot 10^-5right) cdot left((10^-3)^2 - (10^-14)^2right) approx 0.05656$$



                $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] approx 0.05556$$



                $$[ceAcO-] = C_mathrma - [ceAcOH] approx 0.001$$



                $$alpha = frac[ceAcO-]C_mathrma approx 1.8 %$$



                So you see, in a more dilute mixture the $mathrmpH$ is higher, and the dissociation reaction of acetic acid is 'more complete', whereas at higher concentration the pH is lower, and there is proportionally less acetate anion.



                All of these systems are at equilibrium.






                share|improve this answer











                $endgroup$

















                  6












                  $begingroup$

                  See my comment above.



                  As a numerical example, take acetic acid ($ceAcOH$), which has $K_mathrma = 1.8 cdot 10^-5$.



                  This means that:



                  $$K_mathrma = frac[ceAcO-][ceH+][ceAcOH]$$



                  And the total nominal concentration of acid is:



                  $$C_mathrma = [ceAcOH] + [ceAcO-]$$



                  Combining these two equations, you can see that the % of dissociated acid is:



                  $$alpha = frac[ceAcO-]C_mathrma = fracK_mathrmaK_mathrma + [ceH+]$$



                  i.e. not a constant, but a value that depends on the $mathrmpH$. So no, there is no need for the 'degree of completion' of the reaction to be a constant.



                  You can even calculate the explicit concentrations of all the species.



                  Given that:



                  $$C_mathrma = left(frac1[ceH+] + frac1K_mathrmaright) cdot ( [ceH+]^2 - K_mathrmw^2)$$



                  you can see that, for $mathrmpH = 5$ you need:



                  $$C_mathrma = left(frac110^-5 + frac11.8 cdot 10^-5right) cdot left((10^-5)^2 - (10^-14)^2right) = 1.5554 cdot 10^-5$$



                  Then:



                  $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] = 5.555 cdot 10^-6$$



                  $$[ceAcO-] = C_mathrma - [ceAcOH] = 9.999 cdot 10^-6$$



                  So the % of dissociated $ceAcOH$ is:



                  $$alpha = frac[ceAcO-]C_mathrma approx 64 %$$



                  Now repeat for $mathrmpH = 3$:



                  $$C_mathrma = left(frac110^-3 + frac11.8 cdot 10^-5right) cdot left((10^-3)^2 - (10^-14)^2right) approx 0.05656$$



                  $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] approx 0.05556$$



                  $$[ceAcO-] = C_mathrma - [ceAcOH] approx 0.001$$



                  $$alpha = frac[ceAcO-]C_mathrma approx 1.8 %$$



                  So you see, in a more dilute mixture the $mathrmpH$ is higher, and the dissociation reaction of acetic acid is 'more complete', whereas at higher concentration the pH is lower, and there is proportionally less acetate anion.



                  All of these systems are at equilibrium.






                  share|improve this answer











                  $endgroup$















                    6












                    6








                    6





                    $begingroup$

                    See my comment above.



                    As a numerical example, take acetic acid ($ceAcOH$), which has $K_mathrma = 1.8 cdot 10^-5$.



                    This means that:



                    $$K_mathrma = frac[ceAcO-][ceH+][ceAcOH]$$



                    And the total nominal concentration of acid is:



                    $$C_mathrma = [ceAcOH] + [ceAcO-]$$



                    Combining these two equations, you can see that the % of dissociated acid is:



                    $$alpha = frac[ceAcO-]C_mathrma = fracK_mathrmaK_mathrma + [ceH+]$$



                    i.e. not a constant, but a value that depends on the $mathrmpH$. So no, there is no need for the 'degree of completion' of the reaction to be a constant.



                    You can even calculate the explicit concentrations of all the species.



                    Given that:



                    $$C_mathrma = left(frac1[ceH+] + frac1K_mathrmaright) cdot ( [ceH+]^2 - K_mathrmw^2)$$



                    you can see that, for $mathrmpH = 5$ you need:



                    $$C_mathrma = left(frac110^-5 + frac11.8 cdot 10^-5right) cdot left((10^-5)^2 - (10^-14)^2right) = 1.5554 cdot 10^-5$$



                    Then:



                    $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] = 5.555 cdot 10^-6$$



                    $$[ceAcO-] = C_mathrma - [ceAcOH] = 9.999 cdot 10^-6$$



                    So the % of dissociated $ceAcOH$ is:



                    $$alpha = frac[ceAcO-]C_mathrma approx 64 %$$



                    Now repeat for $mathrmpH = 3$:



                    $$C_mathrma = left(frac110^-3 + frac11.8 cdot 10^-5right) cdot left((10^-3)^2 - (10^-14)^2right) approx 0.05656$$



                    $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] approx 0.05556$$



                    $$[ceAcO-] = C_mathrma - [ceAcOH] approx 0.001$$



                    $$alpha = frac[ceAcO-]C_mathrma approx 1.8 %$$



                    So you see, in a more dilute mixture the $mathrmpH$ is higher, and the dissociation reaction of acetic acid is 'more complete', whereas at higher concentration the pH is lower, and there is proportionally less acetate anion.



                    All of these systems are at equilibrium.






                    share|improve this answer











                    $endgroup$



                    See my comment above.



                    As a numerical example, take acetic acid ($ceAcOH$), which has $K_mathrma = 1.8 cdot 10^-5$.



                    This means that:



                    $$K_mathrma = frac[ceAcO-][ceH+][ceAcOH]$$



                    And the total nominal concentration of acid is:



                    $$C_mathrma = [ceAcOH] + [ceAcO-]$$



                    Combining these two equations, you can see that the % of dissociated acid is:



                    $$alpha = frac[ceAcO-]C_mathrma = fracK_mathrmaK_mathrma + [ceH+]$$



                    i.e. not a constant, but a value that depends on the $mathrmpH$. So no, there is no need for the 'degree of completion' of the reaction to be a constant.



                    You can even calculate the explicit concentrations of all the species.



                    Given that:



                    $$C_mathrma = left(frac1[ceH+] + frac1K_mathrmaright) cdot ( [ceH+]^2 - K_mathrmw^2)$$



                    you can see that, for $mathrmpH = 5$ you need:



                    $$C_mathrma = left(frac110^-5 + frac11.8 cdot 10^-5right) cdot left((10^-5)^2 - (10^-14)^2right) = 1.5554 cdot 10^-5$$



                    Then:



                    $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] = 5.555 cdot 10^-6$$



                    $$[ceAcO-] = C_mathrma - [ceAcOH] = 9.999 cdot 10^-6$$



                    So the % of dissociated $ceAcOH$ is:



                    $$alpha = frac[ceAcO-]C_mathrma approx 64 %$$



                    Now repeat for $mathrmpH = 3$:



                    $$C_mathrma = left(frac110^-3 + frac11.8 cdot 10^-5right) cdot left((10^-3)^2 - (10^-14)^2right) approx 0.05656$$



                    $$[ceAcOH] = fracC_mathrma cdot [ceH+]K_mathrma + [ceH+] approx 0.05556$$



                    $$[ceAcO-] = C_mathrma - [ceAcOH] approx 0.001$$



                    $$alpha = frac[ceAcO-]C_mathrma approx 1.8 %$$



                    So you see, in a more dilute mixture the $mathrmpH$ is higher, and the dissociation reaction of acetic acid is 'more complete', whereas at higher concentration the pH is lower, and there is proportionally less acetate anion.



                    All of these systems are at equilibrium.







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 2 days ago









                    andselisk

                    18k656119




                    18k656119










                    answered 2 days ago









                    user6376297user6376297

                    34016




                    34016





















                        4












                        $begingroup$

                        $K$, the equilibrium constant, is independent of the composition of the system. It simply describes the preference of the system for reactants or products.



                        On the other hand, there is the reaction quotient, $Q$, which describes the position of the system relative to equilibrium. $Q$ is the value that is variable and that you adjust to be closer to $K$. Technically, $K$ can also be computed from the standard free energy change of the reaction, $Delta G ^circ$.



                        What's confusing is the $Q$ and $K$ are computed in the exact same way, with the sole difference that for $Q$, you plug in the values you have right now, and for $K$, you plug in the values at any equilibrium.



                        If $Q=K$, you are at equilibrium.



                        If $Q < K$, you need to push the reaction towards more products.



                        If $Q > K$, you need to push the reaction towards more reactants.



                        When you dilute a solution (or make other changes), you may change the value of $Q$, which may put you farther from equilibrium, but the opposite may also be true. It depends on the specific reaction and the form of the equilibrium expression.



                        EDIT:



                        Your confusion is because you're confusing $Q$ measured at different points in time. At the end of the reaction $t = infty$, $Q = K$. At the beginning of the reaction, $Q_0 < K$. Over time, as the reaction goes towards equilibrium, the value of $Q$ will get closer to $K$. If at the beginning of the reaction, you dilute the solution, you may get a different value of $Q$. If it's smaller, then you have farther to go to get to equilibrium. But again, this depends on the molecularity of the reaction.



                        $$ceA + B -> C$$



                        $$ceA -> C$$



                        $$ceA -> C + D$$



                        Here are three different reactions.



                        In the first reaction, at the beginning of the reaction, with $Q < K$, dilution pushes you towards equilibrium because reactant concentrations enter into the equilibrium expression twice.



                        $$Q = fracce[C]ce[A][B]$$



                        If you halve all three concentrations, the value of $Q$ will get bigger.



                        In a similar vein, the second equation is unaffected by dilution. In fact, at equilibrium, dilution preserves equilibrium.



                        And for reaction 3, dilution pushes you farther away from equilibrium.



                        For all three reactions, at the end of the reaction, you will have $Q = K$. But for reactions 1 and 3, dilution at equilibrium changes the value of $Q$ and the reaction will need to adjust again to reach equilibrium.






                        share|improve this answer











                        $endgroup$












                        • $begingroup$
                          "You may change the value of Q" the Q at the end of the diluted-solution's reaction? If so, then does that mean that if you dilute a solution to a certain point, Q stops going towards K? Also, If K is small (say smaller than 10⁴), can you dilute a solution to a certain concentration so that it's reaction is complete (α=1)? If not, then how can this saying be explained: "K is only affected by temperature and not the initial concentration of the reactants, while the 'advancement' of a reaction (α) is affected by both temperature and the initial concentration of the reactants"?
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago






                        • 1




                          $begingroup$
                          No, immediately after dilution. $Q$ will be $K$ at the end. You cannot dilute the reaction to completion. But it might get closer or farther depending on coefficients of the balanced reaction. I think you are confusing $K$ and $Q$. The first is constant. The latter is not.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          Hmm, I think I'm having trouble wrapping my head around how can a diluted-reaction be closer to completion with Q at the end of that reaction still being the same as before
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago











                        • $begingroup$
                          Let me add an edit. I think that will help.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          The question is inactive, I doubt anyone will see it, but go ahead
                          $endgroup$
                          – Elhamer Yacine
                          yesterday















                        4












                        $begingroup$

                        $K$, the equilibrium constant, is independent of the composition of the system. It simply describes the preference of the system for reactants or products.



                        On the other hand, there is the reaction quotient, $Q$, which describes the position of the system relative to equilibrium. $Q$ is the value that is variable and that you adjust to be closer to $K$. Technically, $K$ can also be computed from the standard free energy change of the reaction, $Delta G ^circ$.



                        What's confusing is the $Q$ and $K$ are computed in the exact same way, with the sole difference that for $Q$, you plug in the values you have right now, and for $K$, you plug in the values at any equilibrium.



                        If $Q=K$, you are at equilibrium.



                        If $Q < K$, you need to push the reaction towards more products.



                        If $Q > K$, you need to push the reaction towards more reactants.



                        When you dilute a solution (or make other changes), you may change the value of $Q$, which may put you farther from equilibrium, but the opposite may also be true. It depends on the specific reaction and the form of the equilibrium expression.



                        EDIT:



                        Your confusion is because you're confusing $Q$ measured at different points in time. At the end of the reaction $t = infty$, $Q = K$. At the beginning of the reaction, $Q_0 < K$. Over time, as the reaction goes towards equilibrium, the value of $Q$ will get closer to $K$. If at the beginning of the reaction, you dilute the solution, you may get a different value of $Q$. If it's smaller, then you have farther to go to get to equilibrium. But again, this depends on the molecularity of the reaction.



                        $$ceA + B -> C$$



                        $$ceA -> C$$



                        $$ceA -> C + D$$



                        Here are three different reactions.



                        In the first reaction, at the beginning of the reaction, with $Q < K$, dilution pushes you towards equilibrium because reactant concentrations enter into the equilibrium expression twice.



                        $$Q = fracce[C]ce[A][B]$$



                        If you halve all three concentrations, the value of $Q$ will get bigger.



                        In a similar vein, the second equation is unaffected by dilution. In fact, at equilibrium, dilution preserves equilibrium.



                        And for reaction 3, dilution pushes you farther away from equilibrium.



                        For all three reactions, at the end of the reaction, you will have $Q = K$. But for reactions 1 and 3, dilution at equilibrium changes the value of $Q$ and the reaction will need to adjust again to reach equilibrium.






                        share|improve this answer











                        $endgroup$












                        • $begingroup$
                          "You may change the value of Q" the Q at the end of the diluted-solution's reaction? If so, then does that mean that if you dilute a solution to a certain point, Q stops going towards K? Also, If K is small (say smaller than 10⁴), can you dilute a solution to a certain concentration so that it's reaction is complete (α=1)? If not, then how can this saying be explained: "K is only affected by temperature and not the initial concentration of the reactants, while the 'advancement' of a reaction (α) is affected by both temperature and the initial concentration of the reactants"?
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago






                        • 1




                          $begingroup$
                          No, immediately after dilution. $Q$ will be $K$ at the end. You cannot dilute the reaction to completion. But it might get closer or farther depending on coefficients of the balanced reaction. I think you are confusing $K$ and $Q$. The first is constant. The latter is not.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          Hmm, I think I'm having trouble wrapping my head around how can a diluted-reaction be closer to completion with Q at the end of that reaction still being the same as before
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago











                        • $begingroup$
                          Let me add an edit. I think that will help.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          The question is inactive, I doubt anyone will see it, but go ahead
                          $endgroup$
                          – Elhamer Yacine
                          yesterday













                        4












                        4








                        4





                        $begingroup$

                        $K$, the equilibrium constant, is independent of the composition of the system. It simply describes the preference of the system for reactants or products.



                        On the other hand, there is the reaction quotient, $Q$, which describes the position of the system relative to equilibrium. $Q$ is the value that is variable and that you adjust to be closer to $K$. Technically, $K$ can also be computed from the standard free energy change of the reaction, $Delta G ^circ$.



                        What's confusing is the $Q$ and $K$ are computed in the exact same way, with the sole difference that for $Q$, you plug in the values you have right now, and for $K$, you plug in the values at any equilibrium.



                        If $Q=K$, you are at equilibrium.



                        If $Q < K$, you need to push the reaction towards more products.



                        If $Q > K$, you need to push the reaction towards more reactants.



                        When you dilute a solution (or make other changes), you may change the value of $Q$, which may put you farther from equilibrium, but the opposite may also be true. It depends on the specific reaction and the form of the equilibrium expression.



                        EDIT:



                        Your confusion is because you're confusing $Q$ measured at different points in time. At the end of the reaction $t = infty$, $Q = K$. At the beginning of the reaction, $Q_0 < K$. Over time, as the reaction goes towards equilibrium, the value of $Q$ will get closer to $K$. If at the beginning of the reaction, you dilute the solution, you may get a different value of $Q$. If it's smaller, then you have farther to go to get to equilibrium. But again, this depends on the molecularity of the reaction.



                        $$ceA + B -> C$$



                        $$ceA -> C$$



                        $$ceA -> C + D$$



                        Here are three different reactions.



                        In the first reaction, at the beginning of the reaction, with $Q < K$, dilution pushes you towards equilibrium because reactant concentrations enter into the equilibrium expression twice.



                        $$Q = fracce[C]ce[A][B]$$



                        If you halve all three concentrations, the value of $Q$ will get bigger.



                        In a similar vein, the second equation is unaffected by dilution. In fact, at equilibrium, dilution preserves equilibrium.



                        And for reaction 3, dilution pushes you farther away from equilibrium.



                        For all three reactions, at the end of the reaction, you will have $Q = K$. But for reactions 1 and 3, dilution at equilibrium changes the value of $Q$ and the reaction will need to adjust again to reach equilibrium.






                        share|improve this answer











                        $endgroup$



                        $K$, the equilibrium constant, is independent of the composition of the system. It simply describes the preference of the system for reactants or products.



                        On the other hand, there is the reaction quotient, $Q$, which describes the position of the system relative to equilibrium. $Q$ is the value that is variable and that you adjust to be closer to $K$. Technically, $K$ can also be computed from the standard free energy change of the reaction, $Delta G ^circ$.



                        What's confusing is the $Q$ and $K$ are computed in the exact same way, with the sole difference that for $Q$, you plug in the values you have right now, and for $K$, you plug in the values at any equilibrium.



                        If $Q=K$, you are at equilibrium.



                        If $Q < K$, you need to push the reaction towards more products.



                        If $Q > K$, you need to push the reaction towards more reactants.



                        When you dilute a solution (or make other changes), you may change the value of $Q$, which may put you farther from equilibrium, but the opposite may also be true. It depends on the specific reaction and the form of the equilibrium expression.



                        EDIT:



                        Your confusion is because you're confusing $Q$ measured at different points in time. At the end of the reaction $t = infty$, $Q = K$. At the beginning of the reaction, $Q_0 < K$. Over time, as the reaction goes towards equilibrium, the value of $Q$ will get closer to $K$. If at the beginning of the reaction, you dilute the solution, you may get a different value of $Q$. If it's smaller, then you have farther to go to get to equilibrium. But again, this depends on the molecularity of the reaction.



                        $$ceA + B -> C$$



                        $$ceA -> C$$



                        $$ceA -> C + D$$



                        Here are three different reactions.



                        In the first reaction, at the beginning of the reaction, with $Q < K$, dilution pushes you towards equilibrium because reactant concentrations enter into the equilibrium expression twice.



                        $$Q = fracce[C]ce[A][B]$$



                        If you halve all three concentrations, the value of $Q$ will get bigger.



                        In a similar vein, the second equation is unaffected by dilution. In fact, at equilibrium, dilution preserves equilibrium.



                        And for reaction 3, dilution pushes you farther away from equilibrium.



                        For all three reactions, at the end of the reaction, you will have $Q = K$. But for reactions 1 and 3, dilution at equilibrium changes the value of $Q$ and the reaction will need to adjust again to reach equilibrium.







                        share|improve this answer














                        share|improve this answer



                        share|improve this answer








                        edited 2 days ago

























                        answered 2 days ago









                        ZheZhe

                        13k12650




                        13k12650











                        • $begingroup$
                          "You may change the value of Q" the Q at the end of the diluted-solution's reaction? If so, then does that mean that if you dilute a solution to a certain point, Q stops going towards K? Also, If K is small (say smaller than 10⁴), can you dilute a solution to a certain concentration so that it's reaction is complete (α=1)? If not, then how can this saying be explained: "K is only affected by temperature and not the initial concentration of the reactants, while the 'advancement' of a reaction (α) is affected by both temperature and the initial concentration of the reactants"?
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago






                        • 1




                          $begingroup$
                          No, immediately after dilution. $Q$ will be $K$ at the end. You cannot dilute the reaction to completion. But it might get closer or farther depending on coefficients of the balanced reaction. I think you are confusing $K$ and $Q$. The first is constant. The latter is not.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          Hmm, I think I'm having trouble wrapping my head around how can a diluted-reaction be closer to completion with Q at the end of that reaction still being the same as before
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago











                        • $begingroup$
                          Let me add an edit. I think that will help.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          The question is inactive, I doubt anyone will see it, but go ahead
                          $endgroup$
                          – Elhamer Yacine
                          yesterday
















                        • $begingroup$
                          "You may change the value of Q" the Q at the end of the diluted-solution's reaction? If so, then does that mean that if you dilute a solution to a certain point, Q stops going towards K? Also, If K is small (say smaller than 10⁴), can you dilute a solution to a certain concentration so that it's reaction is complete (α=1)? If not, then how can this saying be explained: "K is only affected by temperature and not the initial concentration of the reactants, while the 'advancement' of a reaction (α) is affected by both temperature and the initial concentration of the reactants"?
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago






                        • 1




                          $begingroup$
                          No, immediately after dilution. $Q$ will be $K$ at the end. You cannot dilute the reaction to completion. But it might get closer or farther depending on coefficients of the balanced reaction. I think you are confusing $K$ and $Q$. The first is constant. The latter is not.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          Hmm, I think I'm having trouble wrapping my head around how can a diluted-reaction be closer to completion with Q at the end of that reaction still being the same as before
                          $endgroup$
                          – Elhamer Yacine
                          2 days ago











                        • $begingroup$
                          Let me add an edit. I think that will help.
                          $endgroup$
                          – Zhe
                          2 days ago










                        • $begingroup$
                          The question is inactive, I doubt anyone will see it, but go ahead
                          $endgroup$
                          – Elhamer Yacine
                          yesterday















                        $begingroup$
                        "You may change the value of Q" the Q at the end of the diluted-solution's reaction? If so, then does that mean that if you dilute a solution to a certain point, Q stops going towards K? Also, If K is small (say smaller than 10⁴), can you dilute a solution to a certain concentration so that it's reaction is complete (α=1)? If not, then how can this saying be explained: "K is only affected by temperature and not the initial concentration of the reactants, while the 'advancement' of a reaction (α) is affected by both temperature and the initial concentration of the reactants"?
                        $endgroup$
                        – Elhamer Yacine
                        2 days ago




                        $begingroup$
                        "You may change the value of Q" the Q at the end of the diluted-solution's reaction? If so, then does that mean that if you dilute a solution to a certain point, Q stops going towards K? Also, If K is small (say smaller than 10⁴), can you dilute a solution to a certain concentration so that it's reaction is complete (α=1)? If not, then how can this saying be explained: "K is only affected by temperature and not the initial concentration of the reactants, while the 'advancement' of a reaction (α) is affected by both temperature and the initial concentration of the reactants"?
                        $endgroup$
                        – Elhamer Yacine
                        2 days ago




                        1




                        1




                        $begingroup$
                        No, immediately after dilution. $Q$ will be $K$ at the end. You cannot dilute the reaction to completion. But it might get closer or farther depending on coefficients of the balanced reaction. I think you are confusing $K$ and $Q$. The first is constant. The latter is not.
                        $endgroup$
                        – Zhe
                        2 days ago




                        $begingroup$
                        No, immediately after dilution. $Q$ will be $K$ at the end. You cannot dilute the reaction to completion. But it might get closer or farther depending on coefficients of the balanced reaction. I think you are confusing $K$ and $Q$. The first is constant. The latter is not.
                        $endgroup$
                        – Zhe
                        2 days ago












                        $begingroup$
                        Hmm, I think I'm having trouble wrapping my head around how can a diluted-reaction be closer to completion with Q at the end of that reaction still being the same as before
                        $endgroup$
                        – Elhamer Yacine
                        2 days ago





                        $begingroup$
                        Hmm, I think I'm having trouble wrapping my head around how can a diluted-reaction be closer to completion with Q at the end of that reaction still being the same as before
                        $endgroup$
                        – Elhamer Yacine
                        2 days ago













                        $begingroup$
                        Let me add an edit. I think that will help.
                        $endgroup$
                        – Zhe
                        2 days ago




                        $begingroup$
                        Let me add an edit. I think that will help.
                        $endgroup$
                        – Zhe
                        2 days ago












                        $begingroup$
                        The question is inactive, I doubt anyone will see it, but go ahead
                        $endgroup$
                        – Elhamer Yacine
                        yesterday




                        $begingroup$
                        The question is inactive, I doubt anyone will see it, but go ahead
                        $endgroup$
                        – Elhamer Yacine
                        yesterday











                        -1












                        $begingroup$

                        A really handwavy explanation would be that the system, attempting to maximize its entropy, will prefer dissociated states as the system dilutes since there will be an increasing number of microscopic configurations with atoms $A$ and $B$ far apart (i.e. molecule $AB$ dissociated) as opposed to close together (i.e. atoms $A$ and $B$ bound together into molecule $AB$).






                        share|improve this answer








                        New contributor




                        creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$

















                          -1












                          $begingroup$

                          A really handwavy explanation would be that the system, attempting to maximize its entropy, will prefer dissociated states as the system dilutes since there will be an increasing number of microscopic configurations with atoms $A$ and $B$ far apart (i.e. molecule $AB$ dissociated) as opposed to close together (i.e. atoms $A$ and $B$ bound together into molecule $AB$).






                          share|improve this answer








                          New contributor




                          creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$















                            -1












                            -1








                            -1





                            $begingroup$

                            A really handwavy explanation would be that the system, attempting to maximize its entropy, will prefer dissociated states as the system dilutes since there will be an increasing number of microscopic configurations with atoms $A$ and $B$ far apart (i.e. molecule $AB$ dissociated) as opposed to close together (i.e. atoms $A$ and $B$ bound together into molecule $AB$).






                            share|improve this answer








                            New contributor




                            creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            $endgroup$



                            A really handwavy explanation would be that the system, attempting to maximize its entropy, will prefer dissociated states as the system dilutes since there will be an increasing number of microscopic configurations with atoms $A$ and $B$ far apart (i.e. molecule $AB$ dissociated) as opposed to close together (i.e. atoms $A$ and $B$ bound together into molecule $AB$).







                            share|improve this answer








                            New contributor




                            creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            share|improve this answer



                            share|improve this answer






                            New contributor




                            creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            answered 2 days ago









                            creillyuclacreillyucla

                            1374




                            1374




                            New contributor




                            creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





                            New contributor





                            creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            creillyucla is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.




















                                Elhamer Yacine is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                Elhamer Yacine is a new contributor. Be nice, and check out our Code of Conduct.












                                Elhamer Yacine is a new contributor. Be nice, and check out our Code of Conduct.











                                Elhamer Yacine is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Chemistry Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111112%2fwhy-does-the-degree-of-dissociation-change-when-we-dilute-a-weak-acid-even-thoug%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Færeyskur hestur Heimild | Tengill | Tilvísanir | LeiðsagnarvalRossið - síða um færeyska hrossið á færeyskuGott ár hjá færeyska hestinum

                                He _____ here since 1970 . Answer needed [closed]What does “since he was so high” mean?Meaning of “catch birds for”?How do I ensure “since” takes the meaning I want?“Who cares here” meaningWhat does “right round toward” mean?the time tense (had now been detected)What does the phrase “ring around the roses” mean here?Correct usage of “visited upon”Meaning of “foiled rail sabotage bid”It was the third time I had gone to Rome or It is the third time I had been to Rome

                                Slayer Innehåll Historia | Stil, komposition och lyrik | Bandets betydelse och framgångar | Sidoprojekt och samarbeten | Kontroverser | Medlemmar | Utmärkelser och nomineringar | Turnéer och festivaler | Diskografi | Referenser | Externa länkar | Navigeringsmenywww.slayer.net”Metal Massacre vol. 1””Metal Massacre vol. 3””Metal Massacre Volume III””Show No Mercy””Haunting the Chapel””Live Undead””Hell Awaits””Reign in Blood””Reign in Blood””Gold & Platinum – Reign in Blood””Golden Gods Awards Winners”originalet”Kerrang! Hall Of Fame””Slayer Looks Back On 37-Year Career In New Video Series: Part Two””South of Heaven””Gold & Platinum – South of Heaven””Seasons in the Abyss””Gold & Platinum - Seasons in the Abyss””Divine Intervention””Divine Intervention - Release group by Slayer””Gold & Platinum - Divine Intervention””Live Intrusion””Undisputed Attitude””Abolish Government/Superficial Love””Release “Slatanic Slaughter: A Tribute to Slayer” by Various Artists””Diabolus in Musica””Soundtrack to the Apocalypse””God Hates Us All””Systematic - Relationships””War at the Warfield””Gold & Platinum - War at the Warfield””Soundtrack to the Apocalypse””Gold & Platinum - Still Reigning””Metallica, Slayer, Iron Mauden Among Winners At Metal Hammer Awards””Eternal Pyre””Eternal Pyre - Slayer release group””Eternal Pyre””Metal Storm Awards 2006””Kerrang! Hall Of Fame””Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Bullet-For My Valentine booed at Metal Hammer Golden Gods Awards””Unholy Aliance””The End Of Slayer?””Slayer: We Could Thrash Out Two More Albums If We're Fast Enough...””'The Unholy Alliance: Chapter III' UK Dates Added”originalet”Megadeth And Slayer To Co-Headline 'Canadian Carnage' Trek”originalet”World Painted Blood””Release “World Painted Blood” by Slayer””Metallica Heading To Cinemas””Slayer, Megadeth To Join Forces For 'European Carnage' Tour - Dec. 18, 2010”originalet”Slayer's Hanneman Contracts Acute Infection; Band To Bring In Guest Guitarist””Cannibal Corpse's Pat O'Brien Will Step In As Slayer's Guest Guitarist”originalet”Slayer’s Jeff Hanneman Dead at 49””Dave Lombardo Says He Made Only $67,000 In 2011 While Touring With Slayer””Slayer: We Do Not Agree With Dave Lombardo's Substance Or Timeline Of Events””Slayer Welcomes Drummer Paul Bostaph Back To The Fold””Slayer Hope to Unveil Never-Before-Heard Jeff Hanneman Material on Next Album””Slayer Debut New Song 'Implode' During Surprise Golden Gods Appearance””Release group Repentless by Slayer””Repentless - Slayer - Credits””Slayer””Metal Storm Awards 2015””Slayer - to release comic book "Repentless #1"””Slayer To Release 'Repentless' 6.66" Vinyl Box Set””BREAKING NEWS: Slayer Announce Farewell Tour””Slayer Recruit Lamb of God, Anthrax, Behemoth + Testament for Final Tour””Slayer lägger ner efter 37 år””Slayer Announces Second North American Leg Of 'Final' Tour””Final World Tour””Slayer Announces Final European Tour With Lamb of God, Anthrax And Obituary””Slayer To Tour Europe With Lamb of God, Anthrax And Obituary””Slayer To Play 'Last French Show Ever' At Next Year's Hellfst””Slayer's Final World Tour Will Extend Into 2019””Death Angel's Rob Cavestany On Slayer's 'Farewell' Tour: 'Some Of Us Could See This Coming'””Testament Has No Plans To Retire Anytime Soon, Says Chuck Billy””Anthrax's Scott Ian On Slayer's 'Farewell' Tour Plans: 'I Was Surprised And I Wasn't Surprised'””Slayer””Slayer's Morbid Schlock””Review/Rock; For Slayer, the Mania Is the Message””Slayer - Biography””Slayer - Reign In Blood”originalet”Dave Lombardo””An exclusive oral history of Slayer”originalet”Exclusive! Interview With Slayer Guitarist Jeff Hanneman”originalet”Thinking Out Loud: Slayer's Kerry King on hair metal, Satan and being polite””Slayer Lyrics””Slayer - Biography””Most influential artists for extreme metal music””Slayer - Reign in Blood””Slayer guitarist Jeff Hanneman dies aged 49””Slatanic Slaughter: A Tribute to Slayer””Gateway to Hell: A Tribute to Slayer””Covered In Blood””Slayer: The Origins of Thrash in San Francisco, CA.””Why They Rule - #6 Slayer”originalet”Guitar World's 100 Greatest Heavy Metal Guitarists Of All Time”originalet”The fans have spoken: Slayer comes out on top in readers' polls”originalet”Tribute to Jeff Hanneman (1964-2013)””Lamb Of God Frontman: We Sound Like A Slayer Rip-Off””BEHEMOTH Frontman Pays Tribute To SLAYER's JEFF HANNEMAN””Slayer, Hatebreed Doing Double Duty On This Year's Ozzfest””System of a Down””Lacuna Coil’s Andrea Ferro Talks Influences, Skateboarding, Band Origins + More””Slayer - Reign in Blood””Into The Lungs of Hell””Slayer rules - en utställning om fans””Slayer and Their Fans Slashed Through a No-Holds-Barred Night at Gas Monkey””Home””Slayer””Gold & Platinum - The Big 4 Live from Sofia, Bulgaria””Exclusive! Interview With Slayer Guitarist Kerry King””2008-02-23: Wiltern, Los Angeles, CA, USA””Slayer's Kerry King To Perform With Megadeth Tonight! - Oct. 21, 2010”originalet”Dave Lombardo - Biography”Slayer Case DismissedArkiveradUltimate Classic Rock: Slayer guitarist Jeff Hanneman dead at 49.”Slayer: "We could never do any thing like Some Kind Of Monster..."””Cannibal Corpse'S Pat O'Brien Will Step In As Slayer'S Guest Guitarist | The Official Slayer Site”originalet”Slayer Wins 'Best Metal' Grammy Award””Slayer Guitarist Jeff Hanneman Dies””Kerrang! Awards 2006 Blog: Kerrang! Hall Of Fame””Kerrang! Awards 2013: Kerrang! Legend”originalet”Metallica, Slayer, Iron Maien Among Winners At Metal Hammer Awards””Metal Hammer Golden Gods Awards””Bullet For My Valentine Booed At Metal Hammer Golden Gods Awards””Metal Storm Awards 2006””Metal Storm Awards 2015””Slayer's Concert History””Slayer - Relationships””Slayer - Releases”Slayers officiella webbplatsSlayer på MusicBrainzOfficiell webbplatsSlayerSlayerr1373445760000 0001 1540 47353068615-5086262726cb13906545x(data)6033143kn20030215029